937 resultados para Interacting constraints
Resumo:
In this work we present some classes of models whose the corresponding two coupled first-order nonlinear equations can be put into a linear form, and consequently be solved completely. In these cases the so-called trial orbit method is completely unnecessary. We recall that some physically important models as, for instance, the problem of tiling a plane with a network of defects and polymer properties are in this class of models. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We update the indirect bounds on anomalous triple gauge couplings coming from the non-universal one-loop contributions to the Z --> width. These bounds, which are independent of the Higgs boson mass, are in agreement with the standard model predictions for the gauge boson self-couplings since the present value of R-b agrees fairly well with the theoretical estimates. Moreover, these indirect constraints on Delta g(1)(Z) and g(5)(Z) are most stringent than the present direct bounds on these quantities, while the indirect limit on lambda(Z) is weaker than the available experimental data.
Resumo:
We derive constraints on a simple quintessential inflation model, based on a spontaneously broken Phi(4) theory, imposed by the Wilkinson Microwave Anisotropy Probe three-year data (WMAP3) and by galaxy clustering results from the Sloan Digital Sky Survey (SDSS). We find that the scale of symmetry breaking must be larger than about 3 Planck masses in order for inflation to generate acceptable values of the scalar spectral index and of the tensor-to-scalar ratio. We also show that the resulting quintessence equation of state can evolve rapidly at recent times and hence can potentially be distinguished from a simple cosmological constant in this parameter regime.
Resumo:
Working in the context of a proposal for collisional dark matter, we derive bounds on the Higgs boson coupling g' to a stable light scalar particle, which we refer to as phion (phi), required to solve problems with small scale structure formation which arise in collisionless, dark matter models. We discuss the behaviour of the phion in the early universe for different ranges of its mass. We find that a phion in the mass range of 100 MeV is excluded and that a phion in the mass range of I GeV requires a large coupling constant, g' greater than or similar to 2, and m(h) less than or similar to 130 GeV in order to avoid overabundance, in which case the invisible decay mode of the Higgs boson would be dominant. (C) 2001 Elsevier B.V. B.V. All rights reserved.
Resumo:
It has recently been shown that the ten-dimensional superstring can be quantized using the BRST operator Q = philambda(alpha)d(alpha), where lambda(alpha) is a pure spinor satisfying; lambdagamma(m)lambda = 0 and dalpha is the fermionic supersymmetric derivative. In this paper, the pure spinor version of superstring theory is formulated in a curved supergravity background and it is shown that nilpotency and holomorphicity of the pure spinor BRST operator imply the on-shell superspace constraints of the supergravity background. This is shown to lowest order in alpha' for the heterotic and Type II superstrings, thus providing a compact pure spinor version of the ten-dimensional superspace constraints for N = 1 Type IIA and Type IIB supergravities. Since quantization is straightforward using the pure spinor version of the superstring, it is expected that these methods can also be used to compute higher-order alpha' corrections to the ten-dimensional superspace constraints. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
We present a numerical scheme for solving the time-independent nonlinear Gross-Pitaevskii equation in two dimensions describing the Bose-Einstein condensate of trapped interacting neutral atoms at zero temperature. The trap potential is taken to be of the harmonic-oscillator type and the interaction both attractive and repulsive. The Gross-Pitaevskii equation is numerically integrated consistent with the correct boundary conditions at the origin and in the asymptotic region. Rapid convergence is obtained in all cases studied. In the attractive case there is a limit Co the maximum number of atoms in the condensate. (C) 2000 Published by Elsevier B.V. B.V. All rights reserved.
Resumo:
VAMP (variable-mass particle) scenarios, in which the mass of the cold dark matter particles is a function of the scalar field responsible for the present acceleration of the Universe, have been proposed as a solution to the cosmic coincidence problem, since in the attractor regime both dark energy and dark matter scale in the same way. We find that only a narrow region in parameter space leads to models with viable values for the Hubble constant and dark energy density today. In the allowed region, the dark energy density starts to dominate around the present epoch and consequently such models cannot solve the coincidence problem. We show that the age of the Universe in this scenario is considerably higher than the age for noncoupled dark energy models, and conclude that more precise independent measurements of the age of the Universe would be useful in distinguishing between coupled and noncoupled dark energy models.
Resumo:
We perform an update of our previous analysis of the constraints on possible deviations of Hb (b) over bar coupling parametrized as (m(b)/v)(a+igamma(5)b), arising from a scalar-pseudoscalar mixing, where the process e(+)e(-)-->b (b) over bar nu(ν) over bar was used. In this paper we include a complete simulation of the process e(+)e(-)-->b (b) over bare(+)e(-) and combine these results to obtain tighter bounds on the deviations of the parameters a and b from their standard model values that could be measured at the Next Linear Collider.