889 resultados para Input vector


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have employed time-dependent local-spin density-functional theory to analyze the multipole spin and charge density excitations in GaAs-AlxGa1-xAs quantum dots. The on-plane transferred momentum degree of freedom has been taken into account, and the wave-vector dependence of the excitations is discussed. In agreement with previous experiments, we have found that the energies of these modes do not depend on the transferred wave vector, although their intensities do. Comparison with a recent resonant Raman scattering experiment [C. Schüller et al., Phys. Rev. Lett. 80, 2673 (1998)] is made. This allows us to identify the angular momentum of several of the observed modes as well as to reproduce their energies

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rice is the most extensively cultivated crop in the world, particularly concentrated in Asia and the Far East. Asian countries together make up for as much as 91.80 per cent of the world production of rice in 1986. The main objective of the present study is to analyse the rice economy of Kerala over time and space at the State, district and taluk level. The thesis analyses the trends in area, yield and total production of rice during the three seasons in the state, districts and taluks and studies the trends in input and output prices of rice and coconut in the state, districts and taluks. The researcher estimates the impact of input and output prices on area, yield and total output of rice in the state, districts and selected taluks and examines the conversion of paddy field into coconut garden and rubber plantation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Speech is the most natural means of communication among human beings and speech processing and recognition are intensive areas of research for the last five decades. Since speech recognition is a pattern recognition problem, classification is an important part of any speech recognition system. In this work, a speech recognition system is developed for recognizing speaker independent spoken digits in Malayalam. Voice signals are sampled directly from the microphone. The proposed method is implemented for 1000 speakers uttering 10 digits each. Since the speech signals are affected by background noise, the signals are tuned by removing the noise from it using wavelet denoising method based on Soft Thresholding. Here, the features from the signals are extracted using Discrete Wavelet Transforms (DWT) because they are well suitable for processing non-stationary signals like speech. This is due to their multi- resolutional, multi-scale analysis characteristics. Speech recognition is a multiclass classification problem. So, the feature vector set obtained are classified using three classifiers namely, Artificial Neural Networks (ANN), Support Vector Machines (SVM) and Naive Bayes classifiers which are capable of handling multiclasses. During classification stage, the input feature vector data is trained using information relating to known patterns and then they are tested using the test data set. The performances of all these classifiers are evaluated based on recognition accuracy. All the three methods produced good recognition accuracy. DWT and ANN produced a recognition accuracy of 89%, SVM and DWT combination produced an accuracy of 86.6% and Naive Bayes and DWT combination produced an accuracy of 83.5%. ANN is found to be better among the three methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the application of wavelet processing in the domain of handwritten character recognition. To attain high recognition rate, robust feature extractors and powerful classifiers that are invariant to degree of variability of human writing are needed. The proposed scheme consists of two stages: a feature extraction stage, which is based on Haar wavelet transform and a classification stage that uses support vector machine classifier. Experimental results show that the proposed method is effective

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A spectral angle based feature extraction method, Spectral Clustering Independent Component Analysis (SC-ICA), is proposed in this work to improve the brain tissue classification from Magnetic Resonance Images (MRI). SC-ICA provides equal priority to global and local features; thereby it tries to resolve the inefficiency of conventional approaches in abnormal tissue extraction. First, input multispectral MRI is divided into different clusters by a spectral distance based clustering. Then, Independent Component Analysis (ICA) is applied on the clustered data, in conjunction with Support Vector Machines (SVM) for brain tissue analysis. Normal and abnormal datasets, consisting of real and synthetic T1-weighted, T2-weighted and proton density/fluid-attenuated inversion recovery images, were used to evaluate the performance of the new method. Comparative analysis with ICA based SVM and other conventional classifiers established the stability and efficiency of SC-ICA based classification, especially in reproduction of small abnormalities. Clinical abnormal case analysis demonstrated it through the highest Tanimoto Index/accuracy values, 0.75/98.8%, observed against ICA based SVM results, 0.17/96.1%, for reproduced lesions. Experimental results recommend the proposed method as a promising approach in clinical and pathological studies of brain diseases

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In our study we use a kernel based classification technique, Support Vector Machine Regression for predicting the Melting Point of Drug – like compounds in terms of Topological Descriptors, Topological Charge Indices, Connectivity Indices and 2D Auto Correlations. The Machine Learning model was designed, trained and tested using a dataset of 100 compounds and it was found that an SVMReg model with RBF Kernel could predict the Melting Point with a mean absolute error 15.5854 and Root Mean Squared Error 19.7576

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A GIS has been designed with limited Functionalities; but with a novel approach in Aits design. The spatial data model adopted in the design of KBGIS is the unlinked vector model. Each map entity is encoded separately in vector fonn, without referencing any of its neighbouring entities. Spatial relations, in other words, are not encoded. This approach is adequate for routine analysis of geographic data represented on a planar map, and their display (Pages 105-106). Even though spatial relations are not encoded explicitly, they can be extracted through the specially designed queries. This work was undertaken as an experiment to study the feasibility of developing a GIS using a knowledge base in place of a relational database. The source of input spatial data was accurate sheet maps that were manually digitised. Each identifiable geographic primitive was represented as a distinct object, with its spatial properties and attributes defined. Composite spatial objects, made up of primitive objects, were formulated, based on production rules defining such compositions. The facts and rules were then organised into a production system, using OPS5

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Infolge der durch die internationalen Schulvergleichstests eingeleiteten empirischen Wende in der Erziehungswissenschaft hat sich die Aufmerksamkeit vom Input schulischen Lehrens und Lernens zunehmend auf die Ergebnisse (Output) bzw. Wirkungen (Outcomes) verlagert. Die Kernfrage lautet nun: Was kommt am Ende in der Schule bzw. im Unterricht eigentlich heraus? Grundlegende Voraussetzung ergebnisorienterter Steuerung schulischen Unterrichts ist die Formulierung von Bildungsstandards. Wie Bildungsstandards mit Kompetenzmodellen und konkreten Aufgabenstellungen im Unterricht des Faches "Politik & Wirtschaft" verknüpft werden können, wird in diesem Beitrag einer genaueren Analyse unterzogen. Vor dem Hintergrund bildungstheoretischer Vorstellungen im Anschluss an Immanuel Kant kommen dabei das Literacy-Konzept der Pisa-Studie sowie die "Dokumentarische Methode" nach Karl Mannheim zur Anwendung.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Surface (Lambertain) color is a useful visual cue for analyzing material composition of scenes. This thesis adopts a signal processing approach to color vision. It represents color images as fields of 3D vectors, from which we extract region and boundary information. The first problem we face is one of secondary imaging effects that makes image color different from surface color. We demonstrate a simple but effective polarization based technique that corrects for these effects. We then propose a systematic approach of scalarizing color, that allows us to augment classical image processing tools and concepts for multi-dimensional color signals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Support Vector (SV) machine is a novel type of learning machine, based on statistical learning theory, which contains polynomial classifiers, neural networks, and radial basis function (RBF) networks as special cases. In the RBF case, the SV algorithm automatically determines centers, weights and threshold such as to minimize an upper bound on the expected test error. The present study is devoted to an experimental comparison of these machines with a classical approach, where the centers are determined by $k$--means clustering and the weights are found using error backpropagation. We consider three machines, namely a classical RBF machine, an SV machine with Gaussian kernel, and a hybrid system with the centers determined by the SV method and the weights trained by error backpropagation. Our results show that on the US postal service database of handwritten digits, the SV machine achieves the highest test accuracy, followed by the hybrid approach. The SV approach is thus not only theoretically well--founded, but also superior in a practical application.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Integration of inputs by cortical neurons provides the basis for the complex information processing performed in the cerebral cortex. Here, we propose a new analytic framework for understanding integration within cortical neuronal receptive fields. Based on the synaptic organization of cortex, we argue that neuronal integration is a systems--level process better studied in terms of local cortical circuitry than at the level of single neurons, and we present a method for constructing self-contained modules which capture (nonlinear) local circuit interactions. In this framework, receptive field elements naturally have dual (rather than the traditional unitary influence since they drive both excitatory and inhibitory cortical neurons. This vector-based analysis, in contrast to scalarsapproaches, greatly simplifies integration by permitting linear summation of inputs from both "classical" and "extraclassical" receptive field regions. We illustrate this by explaining two complex visual cortical phenomena, which are incompatible with scalar notions of neuronal integration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Image analysis and graphics synthesis can be achieved with learning techniques using directly image examples without physically-based, 3D models. In our technique: -- the mapping from novel images to a vector of "pose" and "expression" parameters can be learned from a small set of example images using a function approximation technique that we call an analysis network; -- the inverse mapping from input "pose" and "expression" parameters to output images can be synthesized from a small set of example images and used to produce new images using a similar synthesis network. The techniques described here have several applications in computer graphics, special effects, interactive multimedia and very low bandwidth teleconferencing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a new method to select features for a face detection system using Support Vector Machines (SVMs). In the first step we reduce the dimensionality of the input space by projecting the data into a subset of eigenvectors. The dimension of the subset is determined by a classification criterion based on minimizing a bound on the expected error probability of an SVM. In the second step we select features from the SVM feature space by removing those that have low contributions to the decision function of the SVM.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We compare Naive Bayes and Support Vector Machines on the task of multiclass text classification. Using a variety of approaches to combine the underlying binary classifiers, we find that SVMs substantially outperform Naive Bayes. We present full multiclass results on two well-known text data sets, including the lowest error to date on both data sets. We develop a new indicator of binary performance to show that the SVM's lower multiclass error is a result of its improved binary performance. Furthermore, we demonstrate and explore the surprising result that one-vs-all classification performs favorably compared to other approaches even though it has no error-correcting properties.