872 resultados para Inorganic electrolytes
Resumo:
HfO2-(3-glycidoxipropil)trimethoxisilane (GPTS) planar waveguides were prepared by a sol-gel route. A stable sol of Hafnia nanocrystals was prepared and characterized by photon correlation spectroscopy and high resolution transmission electron microscopy. The suspension was incorporated in GPTS host and the resulting sol was deposited on borosilicate substrates by the spin coating technique. Optical properties such as refractive index, thickness, number of propagating modes, and attenuation coefficient were measured at 632.8, 543.5, and 1550 nm by the prism coupling technique as a function of the HfO2 content. (C) 2000 American Institute of Physics. [S0003-6951(00)03348-9].
Resumo:
Organic-inorganic hybrids were prepared using ureapropyltriethoxysilane, methacryloxypropyltrimethoxysilane and acrylic acid modified zirconium(IV) n-propoxide precursors and were characterized by small angle X-ray scattering, X-ray diffraction and photoluminescence spectroscopy. The results indicate an effective interaction between the zirconium-based nanoparticles and the siliceous nanodomains that induces changes in the hybrids' emission features. Planar waveguides were obtained by spin-coating of the prepared sols on sodalime and silica substrates. Refractive index, thickness, number of propagating modes, and attenuation coefficient were measured at 543.5, 632.8 and 1550 nm by the prism coupling technique. The synergism between the two hybrid precursors resulted in monomode planar waveguides with low losses in the infrared ( from 0.6-1.1 dB cm(-1)) which also support a number of propagating modes in the visible ( losses from 0.4-1.5 dB cm(-1)). Channel waveguides were also obtained by UV photopatterning using amplitude or phase masks and propagating modes were observed at 1550 nm.
Resumo:
Despite the great importance of ion transport, most of the widely accepted models and theories are valid only in the not very practical limit of low concentrations. Aiming to extend the range of applicability to moderate concentrations, a number of modified models and equations (some approximate, some fundamented on different assumptions, and some just empirical) have been reported. In this work, a general treatment for the electrical conductivity of ionic solutions has been developed, considering the electrical conductivity as a transport phenomenon governed by dissipation and feedback. A general expression for the dependence of the specific conductivity on the solution viscosity (and indirectly on concentration), from which the whole conductivity curve can be obtained, has been derived. The validity of this general approach is demonstrated with experimental results taken from the literature for aqueous and nonaqueous solutions of electrolytes.
Resumo:
The effect of lithium salt doping on the structure and ionic conduction properties of silica-polyethyleneglycol composites is reported. These materials, so called ormolytes (organically modified electrolytes), were obtained by the sol-gel process. They have chemical stability due to the covalent bonds between the inorganic (silica) and organic (polymer) phase. The structure of these hybrid materials was investigated by small-angle X-ray scattering (SAXS) as a function of lithium concentration [O]/[Li] (O being the oxygens of the ether type). The spectra have a well-defined peak attributed to the existence of a liquid-like spatial correlation of silica clusters. The ionic conductivity was studied by AC impedance spectroscopy and is maximum for [O]/[Li] = 15. This result is consistent with SAXS and thermo-mechanical analysis measurements and is due to the formation of cross-linking between the polymer chains for the larger lithium concentrations. These materials are solid, transparent, flexible and have an ionic conductivity up to 10(-4) S/cm. (C) 1999 Elsevier B.V. B.V. All rights reserved.
Resumo:
Zirconia-polymethylmetacrylate hybrids prepared by a sol-gel method were deposited by dip-coating on stainless steel to improve the resistance against wet corrosion. The effect of the concentration of polymethylmetacrylate and the number of coating applications on the microstructure and corrosion performance of coated samples was investigated. The microstructural properties of samples was analyzed by scanning electron and atomic force microscopy, adhesion tests and profilemeter measurements. The electrochemical corrosion was evaluated through potentiodynamic polarization curves at room temperature. Results show that the sample prepared with 17 vol.% of polymethylmethacrylate has a maximum corrosion resistance, smaller roughness, are hermetic and adherent to the substrate. This film increases the life time of the stainless steel by a factor 30. (C) 1999 Elsevier B.V. B.V. All rights reserved.
Resumo:
Here we describe the preparation of iron(II) porphyrinosilica in a simple one-pot reaction, where the -SO2Cl groups present in the phenyl rings of FeTDCSPP+ react with 3-aminopropyltriethoxysilane and tetraethoxysilane in the presence of a nitrogenous base, leading to iron(III) porphyrinosilica. In this same procedure, molecular cavities containing regularly spaced functional groups are created through the molecular imprinting technique, in which the nitrogenous base coordinated to the iron(III) porphyrin serves as a template. The removal of such template in a Soxhlet extractor leads to a cavity with the same shape and size as the nitrogenous base, enabling the construction of shape-selective catalysts mimicking cytochrome P-450. Five different imprinting molecules have been used: imidazole, 1-methylimidazole, 2-methylbenzimidazole, 4-phenylimidazole and miconazole and ultra-violet/visible absorption spectroscopy, thermogravimetric analysis and electron paramagnetic resonance carried out. (C) 1999 Elsevier B.V. B.V. All rights reserved.
Resumo:
Organic-inorganic hybrids, named di-ureasils and described by polyether-based chains grafted to both ends to a siliceous backbone through urea cross linkages, were used as hosts for incorporation of the well-known coordination complex of trivalent europium (Eu3+) ions described by the formula [Eu(TTA)(3)(H2O)(2)] (where TTA stands for thenoyltrifluoroacetone). By comparing with Eu3+-doped di-ureasil without complex form the new materials prepared here enhanced the quantum efficiency for photoemission of Eu3+ ions. The enhancement can be explained by the coordination ability of the organic counterpart of the host structure which is strong enough to displace water molecules in [Eu(TTA)(3)(H2O)(2)] from the rare earth neighbourhood after the incorporation process. High intensity of Eu3+ emission was observed with a low non-radiative decay rate under ultraviolet excitation. The quantum efficiency calculated from the decay of D-5(0) emission was 74%, which in the same range of values previously obtained for the most efficient Eu3+ coordination compounds reported in literature. Luminescence, X-ray absorption and infrared absorption results considered together leads to a picture where the first coordination shell of Eu3+ is composed of the 6 oxygen atoms of the 3 beta-diketonate ligands and 2 ether-like oxygen atoms of the host. (C) 2003 Elsevier B.V. B.V. All rights reserved.
Resumo:
Nd3+-based organic/inorganic hybrids have potential application in the field of integrated optics. Attractive sol-gel derived di-urea and di-urethane cross-linked poly (oxyethylene) (POE)/siloxane hybrids (di-ureasils and di-urethanesils, respectively) doped with neodymium triflate (Nd(CF3SO3)(3)) were examined by Fourier transform mid-infrared (FT-IR), Raman (FT-Raman), Si-29 magic-angle spinning (MAS) nuclear magnetic resonance (NMR) and photoluminescence spectroscopies, and small-angle X-ray scattering (SAXS). The goals of this work were to determine which cation coordinating site of the host matrix (ether oxygen atoms or carbonyl oxygen atoms) is active in each of the materials analyzed, its influence on the nanostructure of the samples and its relation with the photoluminescence properties. The main conclusion derived from this study is that the hydrogen-bonded associations formed throughout the materials play a major role in the hybrids nanostructure and photoluminescence properties.
Resumo:
Organic-inorganic hybrid materials were prepared from an ureasil precursor (ureapropyltriethoxysilane designated as UPTES) and acrylic acid modified zirconium (IV) n-propoxide. Thin films containing rhodamine 6G (Rh6G) were prepared by spin-coating on glass substrates with different Zr:Si molar ratios (Zr:Si = 75:25, 50:50 and 25:75). Refractive index, thickness, number of propagating modes and attenuation coefficient were measured at 543.5, 632.8 and 1550 nm wavelengths by the prism coupling technique. Distributed feedback (DFB) laser effect was observed and studied as a function of films thickness and refractive index.
Resumo:
The preparation and characterization of new Eu3+ doped polyphosphate-aminosilane hybrids xerogels is reported. Eu3+ D-5(0) emission quantum efficiency ranges from 0.41 to 0.54 depending on the SUP ratio. These rather high values are due to the substitution of phosphate and amino groups for water in the Eu3+ coordination shell. Raman and Si-29 and C-13 CP-MAS NMR results suggest that no strong interaction exists between the polyphosphate and the siloxane parts. Not fully condensed siloxane colloidal domains seem to be homogeneously distributed in the polyphosphate network. Good optical quality and favorable Eu3+ spectroscopic characteristics suggest these new hybrids as good hosts for lanthanide ions in optical devices. (C) 2003 Published by Elsevier B.V.
Resumo:
Eu3+ -doped titania-silica planar waveguides were prepared from tetraethylorthotitanate (TEOT) and modified silane 3-amino-propyltriethoxysilane (APTS). Films were deposited on borosilicate glass substrates by a dip-coating technique. The refractive index, the thickness and the total attenuation coefficient of the waveguides were measured at 632.8 and 1550 nm by prism coupling technique. Starting from pure titania films, the addition of modified silane leads to a decrease in the refractive index and an increase in thickness. Squared electric field simulation has shown that the light confinement in the waveguide increases with the silane content of the so]. Emission spectra present a broad emission band due to the modified silane and EU emission transitions arising mainly from the D-5(0) level to the F-7(J) (J = 0-4) manifolds. The dependence of transition intensities and excited state lifetimes on the initial composition and also on the heat treatment performed was interpreted in terms of structural changes occurring during the preparation process. (C) 2002 Elsevier B.V. B.V. All rights reserved.