974 resultados para IONIZING RADIATION


Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the major challenges for a mission to the Jovian system is the radiation tolerance of the spacecraft (S/C) and the payload. Moreover, being able to achieve science observations with high signal to noise ratios (SNR), while passing through the high flux radiation zones, requires additional ingenuity on the part of the instrument provider. Consequently, the radiation mitigation is closely intertwined with the payload, spacecraft and trajectory design, and requires a systems-level approach. This paper presents a design for the Io Volcano Observer (IVO), a Discovery mission concept that makes multiple close encounters with Io while orbiting Jupiter. The mission aims to answer key outstanding questions about Io, especially the nature of its intense active volcanism and the internal processes that drive it. The payload includes narrow-angle and wide-angle cameras (NAC and WAC), dual fluxgate magnetometers (FGM), a thermal mapper (ThM), dual ion and neutral mass spectrometers (INMS), and dual plasma ion analyzers (PIA). The radiation mitigation is implemented by drawing upon experiences from designs and studies for missions such as the Radiation Belt Storm Probes (RBSP) and Jupiter Europa Orbiter (JEO). At the core of the radiation mitigation is IVO's inclined and highly elliptical orbit, which leads to rapid passes through the most intense radiation near Io, minimizing the total ionizing dose (177 krads behind 100 mils of Aluminum with radiation design margin (RDM) of 2 after 7 encounters). The payload and the spacecraft are designed specifically to accommodate the fast flyby velocities (e.g. the spacecraft is radioisotope powered, remaining small and agile without any flexible appendages). The science instruments, which collect the majority of the high-priority data when close to Io and thus near the peak flux, also have to mitigate transient noise in their detectors. The cameras use a combination of shielding and CMOS detectors with extremely fast readout to mi- imize noise. INMS microchannel plate detectors and PIA channel electron multipliers require additional shielding. The FGM is not sensitive to noise induced by energetic particles and the ThM microbolometer detector is nearly insensitive. Detailed SNR calculations are presented. To facilitate targeting agility, all of the spacecraft components are shielded separately since this approach is more mass efficient than using a radiation vault. IVO uses proven radiation-hardened parts (rated at 100 krad behind equivalent shielding of 280 mils of Aluminum with RDM of 2) and is expected to have ample mass margin to increase shielding if needed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The spectrum of terahertz (THz) emission in gases via ionizing two-color femtosecond pulses is analyzed by means of a semi-analytic model and numerical simulations in 1D, 2D and 3D geometries taking into account propagation effects of both pump and THz fields. We show that produced THz signals interact with free electron trajectories and thus significantly influence further THz generation upon propagation, i.e., make the process inherently nonlocal. This self-action contributes to the observed strong spectral broadening of the generated THz field. Weshow that diffraction of the generated THz radiation is the limiting factor for the co-propagating low frequency amplitudes and thus for the self-action mechanism in 2D and 3D geometries.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The spectrum of terahertz (THz) emission in gases via ionizing two-color femtosecond pulses is analyzed by means of a semi-analytic model and numerical simulations in 1D, 2D and 3D geometries taking into account propagation effects of both pump and THz fields. We show that produced THz signals interact with free electron trajectories and thus significantly influence further THz generation upon propagation, i.e., make the process inherently nonlocal. This self-action contributes to the observed strong spectral broadening of the generated THz field. We show that diffraction of the generated THz radiation is the limiting factor for the co-propagating low frequency amplitudes and thus for the self-action mechanism in 2D and 3D geometries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The finite element and boundary element methods are employed in this study to investigate the sound radiation characteristics of a box-type structure. It has been shown [T.R. Lin, J. Pan, Vibration characteristics of a box-type structure, Journal of Vibration and Acoustics, Transactions of ASME 131 (2009) 031004-1–031004-9] that modes of natural vibration of a box-type structure can be classified into six groups according to the symmetry properties of the three panel pairs forming the box. In this paper, we demonstrate that such properties also reveal information about sound radiation effectiveness of each group of modes. The changes of radiation efficiencies and directivity patterns with the wavenumber ratio (the ratio between the acoustic and the plate bending wavenumbers) are examined for typical modes from each group. Similar characteristics of modal radiation efficiencies between a box structure and a corresponding simply supported panel are observed. The change of sound radiation patterns as a function of the wavenumber ratio is also illustrated. It is found that the sound radiation directivity of each box mode can be correlated to that of elementary sound sources (monopole, dipole, etc.) at frequencies well below the critical frequency of the plates of the box. The sound radiation pattern on the box surface also closely related to the vibration amplitude distribution of the box structure at frequencies above the critical frequency. In the medium frequency range, the radiated sound field is dominated by the edge vibration pattern of the box. The radiation efficiency of all box modes reaches a peak at frequencies above the critical frequency, and gradually approaches unity at higher frequencies.

Relevância:

20.00% 20.00%

Publicador: