482 resultados para Hypothalamus


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In mammals, gonadal function is controlled by a hypothalamic signal generator that directs the pulsatile release of gonadotropin-releasing hormone (GnRH) and the consequent pulsatile secretion of luteinizing hormone. In female rhesus monkeys, the electrophysiological correlates of GnRH pulse generator activity are abrupt, rhythmic increases in hypothalamic multiunit activity (MUA volleys), which represent the simultaneous increase in firing rate of individual neurons. MUA volleys are arrested by estradiol, either spontaneously at midcycle or after the administration of the steroid. Multiunit recordings, however, provide only a measure of total neuronal activity, leaving the behavior of the individual cells obscure. This study was conducted to determine the mode of action of estradiol at the level of single neurons associated with the GnRH pulse generator. Twenty-three such single units were identified by cluster analysis of multiunit recordings obtained from a total of six electrodes implanted in the mediobasal hypothalamus of three ovariectomized rhesus monkeys, and their activity was monitored before and after estradiol administration. The bursting of all 23 units was arrested within 4 h of estradiol administration although their baseline activity was maintained. The bursts of most units reappeared at the same time as the MUA volleys, the recovery of some was delayed, and one remained inhibited for the duration of the study (43 days). The results indicate that estradiol does not desynchronize the bursting of single units associated with the GnRH pulse generator but that it inhibits this phenomenon. The site and mechanism of action of estradiol in this regard remain to be determined.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstinence from chronic administration of various drugs of abuse such as ethanol, opiates, and psychostimulants results in withdrawal syndromes largely unique to each drug class. However, one symptom that appears common to these withdrawal syndromes in humans is a negative affective/motivational state. Prior work in rodents has shown that elevations in intracranial self-stimulation (ICSS) reward thresholds provide a quantitative index that serves as a model for the negative affective state during withdrawal from psychostimulants and opiates. The current study sought to determine whether ICSS threshold elevations also accompany abstinence from chronic ethanol exposure sufficient to induce physical dependence. Rats prepared with stimulating electrodes in the lateral hypothalamus were trained in a discrete-trial current-intensity ICSS threshold procedure; subsequently they were subjected to chronic ethanol administration in ethanol vapor chambers (average blood alcohol level of 197 mg/dl). A time-dependent elevation in ICSS thresholds was observed following removal from the ethanol, but not the control, chambers. Thresholds were significantly elevated for 48 hr after cessation of ethanol exposure, with peak elevations observed at 6-8 hr. Blood alcohol levels were directly correlated with the magnitude of peak threshold elevation. Ratings of traditional overt signs of withdrawal showed a similar time course of expression and resolution. The results suggest that decreased function of reward systems (elevations in reward thresholds) is a common element of withdrawal from chronic administration of several diverse classes of abused drugs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It has been shown that the pituitary contains a cytotropic factor (CTF) that stimulates the secretion of catecholamines by dopaminergic neurons of the hypothalamus. In the present study, CTF was purified from rat pituitaries and found by means of mass spectrometric analysis to be adenosine. This finding was corroborated by the observations that CTF behaves identically to adenosine when subjected to liquid chromatography, is inactivated and converted to inosine by adenosine deaminase, and is qualitatively and quantitatively indistinguishable from adenosine in its biological activity. It is concluded that pituitary adenosine is a trophic factor for hypothalamic dopaminergic neurons.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Antisera were raised against a synthetic peptide corresponding to the carboxyl terminus of the kappa-opioid receptor (KOR1). Specificity of the antisera was verified by staining of COS-7 cells transfected with KOR1 and epitope-tagged KOR1 cDNAs, by recognition by the antisera of proteins on Western blots of both transfected cells and brain tissue, by the absence of staining of both brain tissue and transfected cells after preabsorption of the antisera with the cognate peptide, and on the strong correlation between the distribution of KOR1 immunoreactivity and that of earlier ligand binding and in situ hybridization studies. Results indicate that KOR1 in neurons is targeted into both the axonal and somatodendritic compartments, but the majority of immunostaining was seen in the somatodendritic compartment. In sections from rat and guinea pig brain, prominent KOR1 staining was seen in the ventral forebrain, hypothalamus, thalamus, posterior pituitary, and midbrain. While the staining pattern was similar in both species, distinct differences were also observed. The distribution of preprodynorphin and KOR1 immunoreactivity was complementary in many brain regions, suggesting that KOR1 is poised to mediate the physiological actions of dynorphin. However, the distribution of KOR1 and enkephalin immunoreactivity was complementary in some regions as well. These results suggest that the KOR1 protein is primarily, but not exclusively, deployed to postsynaptic membranes where it mediates the effects of products of preprodynorphin and possibly preproenkephalin.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have molecularly cloned a calcium sensing receptor (CaSR) from a rat striatal cDNA library. Rat CaSR displays 92% overall homology to its bovine counterpart with seven putative transmembrane domains characteristic of the superfamily of guanine nucleotide-binding proteins and significant homology with the metabotropic glutamate receptors. Northern blot analysis reveals two transcripts in thyroid, kidney, lung, ileum, and pituitary. In brain highest regional expression of the RNA occurs in the hypothalamus and the corpus striatum. Immunohistochemistry reveals discrete punctate localizations throughout the brain that appear to be associated with nerve terminals. No staining is evident in cell bodies of neurons or glia. Cerebral arteries display an intense network of CaSR immunoreactive fibers associated with vessel innervation. CaSR on nerve terminal membranes may regulate neurotransmitter disposition in response to Ca2+ levels in the synaptic space.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nitric oxide synthase (NOS)-containing neurons, termed NOergic neurons, occur in various regions of the hypothalamus, including the median eminence-arcuate region, which plays an important role in controlling the release of luteinzing hormone-releasing hormone (LHRH). We examined the effect of NO on release of gamma-aminobutyric acid (GABA) from medial basal hypothalamic (MBH) explants incubated in vitro. Sodium nitroprusside (NP) (300 microM), a spontaneous releaser of NO, doubled the release of GABA. This release was significantly reduced by incubation of the tissue with hemoglobin, a scavenger of NO, whereas hemoglobin alone had no effect on the basal release of GABA. Elevation of the potassium concentration (40 mM) in the medium increased GABA release 15-fold; this release was further augmented by NP. Hemoglobin blocked the increase in GABA release induced by NP but had no effect on potassium-induced release, suggesting that the latter is not related to NO. As in the case of hemoglobin, NG-monomethyl-L-arginine (NMMA), a competitive inhibitor of NOS, had no effect on basal release of GABA, which indicates again that NO is not significant to basal GABA release. However, NMMA markedly inhibited the release of GABA induced by high potassium, which indicates that NO plays a role in potassium-induced release of GABA. In conditions in which the release of GABA was substantially augmented, there was a reduction in GABA tissue stores as well, suggesting that synthesis of GABA in these conditions did not keep up with release of the amine. Although NO released GABA, there was no effect of the released GABA on NO production, for incubation of MBH explants with GABA had no effect on NO release as measured by [14C]citrulline production. To determine whether GABA had any effect on the release of LHRH from these MBH explants, GABA was incubated with the tissue and the effect on LHRH release was determined. GABA (10(-5) or 10(-6) M) induced a 70% decrease in the release of LHRH, indicating that in the male rat GABA inhibits the release of this hypothalamic peptide. This inhibition in LHRH release induced by GABA was blocked by NMMA (300 microM), which indicates that GABA converts the stimulatory effect of NO on LHRH release into an inhibitory one, presumably via GABA receptors, which activate chloride channels that hyperpolarize the cell. Previous results have indicated that norepinephrine stimulates release of NO from the NOergic neurons, which then stimulates the release of LHRH. The current results indicate that the NO released also induces release of GABA, which then inhibits further LHRH release. Thus, in vivo the norepinephrinergic-driven pulses of LHRH release may be terminated by GABA released from GABAergic neurons via NO.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Trabalho Final do Curso de Mestrado Integrado em Medicina, Faculdade de Medicina, Universidade de Lisboa, 2014

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Le sommeil est un besoin vital et le bon fonctionnement de l’organisme dépend de la quantité et de la qualité du sommeil. Le sommeil est régulé par deux processus : un processus circadien qui dépend de l’activité des noyaux suprachiasmatiques de l’hypothalamus et qui régule le moment durant lequel nous allons dormir, et un processus homéostatique qui dépend de l’activité neuronale et se reflète dans l’intensité du sommeil. En effet, le sommeil dépend de l’éveil qui le précède et plus l’éveil dure longtemps, plus le sommeil est profond tel que mesuré par des marqueurs électroencéphalographiques (EEG). Des études ont montré que le bon fonctionnement de ces deux processus régulateurs du sommeil dépend de la plasticité synaptique. Ainsi, les éléments synaptiques régulant la communication et la force synaptique sont d’importants candidats pour agir sur la physiologie de la régulation du sommeil. Les molécules d’adhésion cellulaire sont des acteurs clés dans les mécanismes de plasticité synaptique. Elles régulent l’activité et la maturation des synapses. Des études ont montré que leur absence engendre des conséquences similaires au manque de sommeil. Le but de ce projet de thèse est d’explorer l’effet de l’absence de deux familles de molécule d’adhésion cellulaire, les neuroligines et la famille des récepteur Eph et leur ligand les éphrines dans les processus régulateurs du sommeil. Notre hypothèse est que l’absence d’un des membres de ces deux familles de molécule affecte les mécanismes impliqués dans le processus homéostatique de régulation du sommeil. Afin de répondre à notre hypothèse, nous avons étudié d’une part l’activité EEG chez des souris mutantes n’exprimant pas Neuroligine‐1 (Nlgn1) ou le récepteur EphA4 en condition normale et après une privation de sommeil. D’autre part, nous avons mesuré les changements moléculaires ayant lieu dans ces deux modèles après privation de sommeil. Au niveau de l’activité EEG, nos résultats montrent que l’absence de Nlgn1 augmente la densité des ondes lentes en condition normale et augment l’amplitude et la pente des ondes lentes après privation de sommeil. Nlgn1 est nécessaire au fonctionnement normal de la synchronie corticale, notamment après une privation de sommeil, lui attribuant ainsi un rôle clé dans l’homéostasie du sommeil. Concernant le récepteur EphA4, son absence affecte la durée du sommeil paradoxal ainsi que l’activité sigma qui dépendent du processus circadien. Nos résultats suggèrent donc que ce récepteur est un élément important dans la régulation circadienne du sommeil. Les changements transcriptionnels en réponse à la privation de sommeil des souris n’exprimant pas Nlgn1 et EphA4 ne sont pas différents des souris sauvages. Toutefois, nous avons montré que la privation de sommeil affectait la distribution des marques épigénétiques sur le génome, tels que la méthylation et l’hydroxyméthylation, et que l’expression des molécules régulant ces changements est modifiée chez les souris mutantes pour le récepteur EphA4. Nos observations mettent en évidence que les molécules d’adhésion cellulaire, Nlgn1 et le récepteur EphA4, possèdent un rôle important dans les processus homéostatique et circadien du sommeil et contribuent de manière différente à la régulation du sommeil.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Narcolepsy-cataplexy is a sleep-wake disorder and suggested to be immune-mediated, involving genetic and environmental factors. The autoimmune process eventually leads to a loss of hypocretin neurons in the lateral hypothalamus. Epidemiological studies in several countries proved an increased incidence of narcolepsy after H1N1 flu vaccination and infection. This survey in 30 sleep centers in Switzerland led to the identification of 9 H1N1-vaccinated children and adults as newly diagnosed narcolepsy. Clinical features included the abrupt and severe onset of sleepiness, cataplexy and sleep fragmentation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Adult neural progenitors have been isolated from diverse regions of the CNS using methods which primarily involve the enzymatic digestion of tissue pieces; however, interpretation of these experiments can be complicated by the loss of anatomical resolution during the isolation procedures. We have developed a novel, explant-based technique for the isolation of neural progenitors, Living CNS regions were sectioned using a vibratome and small, well-defined discs of tissue punched out. When Cultured. explants from the cortex, hippocampus, cerebellum, spinal cord, hypothalamus, and caudate nucleus all robustly gave rise to proliferating progenitors. These progenitors were similar in behaviour and morphology to previously characterised multipotent hippocampal progenitor lines. Clones from all regions examined could proliferate from single cells and give rise to secondary neurospheres at a low but consistent frequency. Immunostaining demonstrated that clonal cortical progenitors were able to differentiate into both neurons and glial cells, indicating their multipotent characteristics. These results demonstrate it is possible to isolate anatomically resolved adult neural progenitors from small amounts of tissue throughout the CNS, thus, providing a tool for investigating the frequency and characteristics of progenitor cells from different regions. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Serotonin (5-hydroxytryptamine, 5-HT) is an amine neurotransmitter derived from tryptophan and is important in brain systems regulating mood, emotional behavior, and sleep. Selective serotonin reuptake inhibitor (SSRI) drugs are used to treat disorders such as depression, stress, eating disorders, autism, and schizophrenia. It is thought that these drugs act to prolong the action of 5-HT by blocking reuptake. This may lead to decreased 5-HT content in the nerve fibers themselves; however, this has not previously been directly demonstrated. We have studied the effects of administration of two drugs, imipramine and citalopram, on levels of 5-HT in nerve fibers in the murine brain. Quantitative analysis of the areal density of 5-HT fibers throughout the brain was performed using ImageJ software. While a high density of fibers was observed in mid- and hind-brain regions and areas such as thalamus and hypothalamus, densities were far lower in areas such as cortex, where SSRIs might be thought to exert their actions. As anticipated, imipramine and citalopram produced a decline in 5-HT levels in nerve fibers, but the result was not uniform. Areas such as inferior colliculus showed significant reduction whereas little, if any, change was observed in the adjacent superior colliculus. The reason for, and significance of, this regionality is unclear. It has been proposed that serotonin effects in the brain might be linked to changes in glutamatergic transmission. Extracellular glutamate levels are regulated primarily by glial glutamate transporters. Qualitative evaluation of glutamate transporter immunolabeling in cortex of control and drug-treated mice revealed no discernable difference in intensity of glutamate transporter immunoreactivity. These data suggest that changes in intracellular and extracellular levels of serotonin do not cause concomitant changes in astroglial glutamate transporter expression, and thus cannot represent a mechanism for the delayed efficacy of antidepressants when administered clinically. © 2005 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The medial prefrontal cortex (mPFC) has been strongly implicated in control of the paraventricular nucleus of the hypothalamus (PVN) response to stress. Because of the paucity of direct projections from the mPFC to the PVN, we sought to investigate possible brain regions that might act as a relay between the two during psychological stress. Bilateral ibotenic acid lesions of the rat mPFC enhanced the number of Fos-immunoreactive cells seen in the PVN after exposure to the psychological stressor, air puff. Altered neuronal recruitment was seen in only one of the candidate relay populations examined, the ventral bed nucleus of the stria terminalis (vBNST). Furthermore, bilateral ibotenic acid lesions of the BNST caused a significant attenuation of the PVN response to air puff. To better characterize the structural relationships between the mPFC and PVN, retrograde tracing studies were conducted examining Fos expression in cells retrogradely labeled with cholera toxin b subunit (CTb) from the PVN and the BNST. Results obtained were consistent with an important role for both the mPFC and BNST in the mpPVN CRF cell response to air puff. We suggest a set of connections whereby a direct PVN projection from the ipsilateral vBNST is involved in the mpPVN response to air puff and this may, in turn, be modulated by an indirect projection from the mPFC to the BNST. (C) 2004 Wiley-Liss, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Leptin and Y2 receptors on hypothalamic NPY neurons mediate leptin effects on energy homeostasis; however, their interaction in modulating osteoblast activity is not established. Here, direct testing of this possibility indicates distinct mechanisms of action for leptin anti-osteogenic and Y2(-/-) anabolic pathways in modulating bone formation. Introduction: Central enhancement of bone formation by hypothalamic neurons is observed in leptin-deficient oblob and Y2 receptor null mice. Similar elevation in central neuropeptide Y (NPY) expression and effects on osteoblast activity in these two models suggest a shared pathway between leptin and Y2 receptors in the central control of bone physiology. The aim of this study was to test whether the leptin and Y2 receptor pathways regulate bone by the same or distinct mechanisms. Materials and Methods: The interaction of concomitant leptin and Y2 receptor deficiency in controlling bone was examined in Y2(-/-) oblob double mutant mice, to determine whether leptin and Y2 receptor deficiency have additive effects. Interaction between leptin excess and Y2 receptor deletion was examined using recombinant adeno-associated viral vector overproduction of NPY (AAV-NPY) to produce weight gain and thus leptin excess in adult Y2(-/-) mice. Cancellous bone volume and bone cell function were assessed. Results: Osteoblast activity was comparably elevated in oblob, Y2(-/-), and Y2(-/-) oblob mice. However, greater bone resorption in oblob and Y2(-/-) oblob mice reduced cancellous bone volume compared with Y2(-/-). Both wildtype and Y2(-/-) AAV-NPY mice exhibited marked elevation of white adipose tissue accumulation and hence leptin expression, thereby reducing osteoblast activity. Despite this anti-osteogenic leptin effect in the obese AAV-NPY model, osteoblast activity in Y2(-/-) AAV-NPY mice remained significantly greater than in wildtype AAV-NPY mice. Conclusions: This study suggests that NPY is not a key regulator of the leptin-dependent osteoblast activity, because both the leptin-deficient stimulation of bone formation and the excess leptin inhibition of bone formation can occur in the presence of high hypothalamic NPY. The Y2(-/-) pathway acts consistently to stimulate bone formation; in contrast, leptin continues to suppress bone formation as circulating levels increase. As a result, they act increasingly in opposition as obesity becomes more marked. Thus, in the absence of leptin, the cancellous bone response to loss of Y2 receptor and leptin activity can not be distinguished. However, as leptin levels increase to physiological levels, distinct signaling pathways are revealed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hyperprolactinaemia during lactation is a consequence of the sucking stimulus and in part due to reduced prolactin (PRL) negative feedback. To date, the mechanisms involved in this diminished sensitivity to PRL feedback are unknown but may involve changes in PRL signal transduction within tuberoinfundibular dopaminergic (TIDA) neurons. Therefore, we investigated signal transducers and activators of transcription (STAT) 5 signaling in the TIDA neurons of lactating rats. Dual-label confocal immunofluorescence studies were used to determine the intracellular distribution of STAT5 within TIDA neurons in the dorsomedial arcuate nucleus. In lactating rats with pups removed for 16 h, injection of ovine PRL significantly (P < 0.05) increased the STAT5 nuclear/cytoplasmic ratio compared with vehicle-treated mothers. In contrast, ovine PRL injection did not increase the STAT5 nuclear/cytoplasmic ratio in lactating mothers with pups, demonstrating that PRL signal transduction through STAT5 is reduced in TIDA neurons in the presence of pups. To investigate possible mechanisms involved in reduced PRL signaling, we examined the expression of suppressors of cytokine signaling (SOCS) proteins. Northern analysis on whole hypothalamus showed that CIS (cytokine-inducible SH2 domain-containing protein), but not SOCS1 or SOCS3, mRNA expression was significantly (P < 0.01) up-regulated in suckled lactating rats. Semiquantitative RT-PCR on arcuate nucleus micropunches also showed up-regulation of CIS transcripts. Immunofluorescence studies demonstrated that CIS is expressed in all TIDA neurons in the dorsomedial arcuate nucleus, and the intensity of CIS staining in these neurons is significantly (P < 0.05) increased in lactating rats with sucking pups. Together, these results support the hypothesis that loss of sensitivity to PRL-negative feedback during lactation is a result of increased CIS expression in TIDA neurons.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

NeuropeptideY-, Y2 receptor (Y2)-, and leptin-deficient mice show similar anabolic action in cancellous bone but have not been assessed in cortical bone. Cortical bone mass is elevated in Y2(-/-) mice through greater osteoblast activity. In contrast, leptin deficiency results in reduced bone mass. We show opposing central regulation of cortical bone.