946 resultados para Hypothalamic Paraventricular Nucleus
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Characteristics of family nucleus as correlates of regular participation in sports among adolescents
Resumo:
Objectives To estimate the relationship between family nucleus and sport practice among adolescents.Methods A school-based cross-sectional study carried out with 1,752 Brazilian adolescents (812 male and 940 female), aged 11-17 years. Characteristics of the family nucleus (parental education, socioeconomic status and number of siblings) and sport practice (>= 240 min/week) were assessed by questionnaires. Adjusted prevalence ratios were estimated using Poisson regression models.Results The overall prevalence of sport practice was 14.8% (boys 21.2% and girls 9.4%, P = 0.001). Higher socioeconomic status, number of siblings and parents' educational level were associated with more sport practice.Conclusion Despite the low engagement, family nucleus plays an essential role in the sport practice of our sample of Brazilian adolescents.
Resumo:
The pregeniculate nucleus (PGN) of the primate s thalamus is an agglomerate neuronal having a cap shaped located dorsomedially to the main relay visual information to the cerebral cortex, the dorsal lateral geniculate nucleus (GLD). Several cytoarchitectonic, neurochemical and retinal projections studies have pointed PGN as a structure homologous to intergeniculate leaflet (IGL) of rodents. The IGL receives retinal terminals and appears to be involved in the integration of photic and non-photic information relaying them, through geniculo-hypothalamic tract (TGH), to the main circadian oscillator in mammals, the suprachiasmatic nucleus (SCN) of the hypothalamus. Thus, the IGL participates in the control of the biological rhythm by modulating the activity of the SCN. Pharmacological and IGL injury studies conclude that it is critical in the processing of non-photic information which is transmitted to the SCN. Other studies have found that especially neurons immunoreactive to neuropeptide Y (NPY) respond to this type of stimulation, determined by its colocation with the FOS protein. Has not been determined if the PGN responds, expressing the FOS protein, to the non-photic stimulus nor the neurochemical nature of these cells. Thus, we apply a dark pulse in the specifics circadian phases and analyze the pattern of expression of FOS protein in PGN of the marmoset (Callithrix jacchus). We found that in all animals analyzed the FOS expression was higher in the experimental than in the control group. There was a higher expression of FOS when the dark pulse was applied during the subjective day between the groups. Still, a subregion of the PGN, known by immunoreactive to NPY, had a greater number of FOS-positive cells in relation to his other just close dorsal region. Our data corroborate the theory that the PGN and IGL are homologous structures that were anatomically modified during the evolutionary process, but kept its main neurochemical and functional characteristics. However, injury and hodological studies are still needed for a more accurate conclusion
Resumo:
The light, besides the vision stimuli, controls other process completely independent of image formation, such as the synchronization of the organismic circadian rhythms to the enviromental light/dark cycle. In mammals, this adjust occurs through the retinohypothalamic tract, a direct retinal projection to the suprachiasmatic nucleus, considered to be the major circadian pacemaker. Early studies have identified only the suprachiasmatic nucleus as a retinal target in the hypothalamus. However, using more sensitive neuroanatomic tracers, other retinorecipient hypothalamic regions outside to suprachiasmatic nucleus were pointed in a great number of mammalian species. In this study, the retinohypothalamic tract was shown in the rock cavy (Kerodon rupestris), an endemic rodent of the semiarid region of the Brazilian Northeast, using unilateral intravitreal injections of cholera toxin subunit b as a neuronal tracer. The results reveal that in the rock cavy, besides the suprachiasmatic nucleus, several hypothalamic regions receive direct retinal projection, such as the ventrolateral preoptic nucleus, medial and lateral preoptic areas, the supraoptic nucleus and bordering areas, anterior, lateral and rectrochiasmatic hypothalamic areas, and the subparaventricular zone. The results are discussed by comparing with those of the literature, into a functional context
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Possible connections between the retina and the raphe nuclei were investigated in the monkey Cebus apella by intraocular injection of cholera toxin B subunit (CTb). CTb-positive fibers were seen in the lateral region of the dorsal raphe nucleus (DR) on the side contralateral to the injection, and a few labeled perikarya were observed in the lateral portion of the DR on the ipsilateral side. Our findings suggest that direct and reciprocal connections between the retina and DR may exist in Cebus apella. These connections might be part of an important pathway through which the light/dark cycle influences the Activity and/or functional status of raphe neurons, with potential effects on a broad set of neural and behavioral circuits. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Objective: To establish reference concentration intervals for salivary cortisol in healthy children, in the morning and in the afternoon, investigating factors that interfere with the concentration measured and the possibility that circadian rhythms are present.Methods: A controlled observational study was carried out with 91 children aged 45 days to 36 months, selected at random and living in Santo Andre, state of São Paulo, Brazil. Inclusion criteria were: healthy, well-nourished, free from fever and corticoid use, subdivided by age group (five subsets) at 6-month intervals. Saliva was collected during home visits in the morning and afternoon. Cortisol was radioimmunoassayed with cortisol 3-oxime-bovine albumin antiserum.Results: the five subsets exhibited higher cortisol concentration during the morning than in the afternoon (p < 0.001), and this difference passed 30% from 1 year of age onwards. Mean concentrations, in nmol/L, were 557.86 (morning) and 346.36 (afternoon). A negative linear correlation was observed between morning concentrations and hours' sleep and frequency of meals (p < 0,05), and in the afternoon with anthropometric measurements (p < 0.05).Conclusions: Reference values for normal salivary cortisol in healthy children were established. At:45 days it was possible to observe circadian rhythms, which reached maturity at 12 months of life. Sleep and food deprivation increased morning cortisol levels.
Resumo:
Inhibitory serotonergic and cholecystokinergic mechanisms in the lateral parabrachial nucleus and central GABAergic mechanisms are involved in the regulation of water and NaCl intake. In the present study we investigated if the GABA(A) receptors in the lateral parabrachial nucleus are involved in the control of water, NaCl and food intake in rats. Male Holtzman rats with stainless steel cannulas implanted bilaterally into the lateral parabrachial nucleus were used. Bilateral injections of muscimol (0.2 nmol/0.2 mu l) into the lateral parabrachial nucleus strongly increased 0.3 M NaCl (20.3 +/- 7.2 vs. saline: 2.6 +/- 0.9 ml/180 min) without changing water intake induced by the treatment with the diuretic furosemide combined with low dose of the angiotensin converting enzyme inhibitor captopril s.c. In euhydrated and satiated rats, bilateral lateral parabrachial nucleus injections of muscimol (0.2 and 0.5 nmol/0.2 0) induced 0.3 M NaCl intake (12.1 +/- 6.5 and 32.5 +/- 7.3 ml/180 min, respectively, vs. saline: 0.4 +/- 0.2 ml/180 min) and water intake (5.2 +/- 2.0 and 7.6 +/- 2.8 ml/ 180 min, respectively, vs. saline: 0.8 +/- 0.4 ml/180 min), but no food intake (2 +/- 0.4 g/240 min vs. saline: 1 +/- 0.3 g/240 min). Bilateral lateral parabrachial nucleus injections of the GABAA antagonist bicuculline (1.6 nmol/0.2 mu l) abolished the effects of muscimol (0.5 nmol/0.2 mu l) on 0.3 M NaCl and water intake. Muscimol (0.5 nmol/0.2 mu l) into the lateral parabrachial nucleus also induced a slight ingestion of water (4.2 +/- 1.6 ml/240 min vs. saline: 1.1 +/- 0.3 ml/240 min) when only water was available, a long lasting (for at least 2 h) increase on mean arterial pressure (14 +/- 4 mm Hg, vs. saline: -1 +/- 1 mm Hg) and only a tendency to increase urinary volume and Na+ and K+ renal excretion. Therefore the activation of GABAA receptors in the lateral parabrachial nucleus induces strong NaCl intake, a small ingestion of water and pressor responses, without changes on food intake. (c) 2005 Published by Elsevier Ltd on behalf of IBRO.
Resumo:
GABAergic activation in the lateral parabrachial nucleus (LPBN) induces sodium and water intake in satiated and normovolemic rats. In the present study we investigated the effects of GABA(A) receptor activation in the LPBN on 0.3 M NaCl, water, 2% sucrose and food intake in rats submitted to sodium depletion (treatment with the diuretic furosemide subcutaneously + sodium deficient food for 24 h), 24 h food deprivation or 24 h water deprivation. Male Holtzman rats with bilateral stainless steel cannulas implanted into the LPBN were used. In sodium depleted rats, muscimol (GABA(A) receptor agonist, 0.5 nmol/0.2 mu/l), bilaterally injected into the LPBN, produced an inconsistent increase of water intake and two opposite effects on 0.3 M NaCl intake: an early inhibition (4.3 +/- 2.7 versus saline: 14.4 +/- 1.0 ml/15 min) and a late facilitation (37.6 +/- 2.7 versus saline: 21.1 +/- 0.9 ml/180 min). The pretreatment of the LPBN with bicuculline (GABA(A) receptor antagonist, 1.6 nmol) abolished these effects of muscimol. Muscimol into the LPBN also reduced food deprivation-induced food intake in the first 30 min of test (1.7 +/- 0.6 g versus saline: 4.1 +/- 0.6 g), without changing water deprivation-induced water intake or 2% sucrose intake in sodium depleted rats. Therefore, although GABAA receptors in the LPBN are not tonically involved in the control of sodium depletion-induced sodium intake, GABAA receptor activation in the LPBN produces an early inhibition and a late facilitation of sodium depletion-induced sodium intake. GABAA activation in the LPBN also inhibits food intake, while it consistently increases only sodium intake and not water, food or sucrose intake. (c) 2007 Elsevier B.V. All rights reserved.