911 resultados para Horizontal loading


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This theoretical paper examines a non-normal and non-linear model of a horizontal Rijke tube. Linear and non-linear optimal initial states, which maximize acoustic energy growth over a given time from a given energy, are calculated. It is found that non-linearity and non-normality both contribute to transient growth and that, for this model, linear optimal states are only a good predictor of non-linear optimal states for low initial energies. Two types of non-linear optimal initial state are found. The first has strong energy growth during the first period of the fundamental mode but loses energy thereafter. The second has weaker energy growth during the first period but retains high energy for longer. The second type causes triggering to self-sustained oscillations from lower energy than the first and has higher energy in the fundamental mode. This suggests, for instance, that low frequency noise will be more effective at causing triggering than high frequency noise.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper gives briefly the experiments carried out to determine the optimum weight of otter board that should be used for a trawl gear for better efficiency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inputs of nitrogen, phosphorous and dissolved silica from watersheds draining into the Bay of Bengal Large Marine Ecosystem are calculated for the present day and predictions made for 2030 and 2050 are presented. The major sources are identified and the Indicator of Coastal Eutrophication (ICEP) is calculated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study looked at nutrient pollution and how it is affecting coastal and marine ecosystems in Bangladesh, India, Maldives, Pakistan and Sri Lanka. Causes it addressed included: agricultural practices; aquaculture; domestic sewage; industrial actions; and the burning of fossil fuels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Detailed investigations of the effectiveness of three widely adopted optical orthogonal frequency division multiplexing (OOFDM) adaptive loading algorithms, including power loading (PL), bit loading (BL), and bit-and-power loading (BPL), are undertaken, over < 100km single-mode fibre (SMF) system without incorporating inline optical amplification and chromatic dispersion (CD) compensation. It is shown that the BPL (PL) algorithm always offers the best (worst) transmission performance. The absolute transmission capacity differences between these algorithms are independent of transmission distance and launched optical power. Moreover, it is shown that in comparison with the most sophisticated BPL algorithm, the simplest PL algorithm is effective in escalating the OOFDM SMF links performance to its maximum potential. On the other hand, when employing a large number of subcarriers and a high digital-to-analogue DAC)/analogue-to-digital (ADC) sampling rate, the sophisticated BPL algorithm has to be adopted. © 2011 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study investigates the interaction between soil and pipeline in sand subjected to lateral ground displacements with emphasis on the peak force exerted to a bended elbow-pipe. A series of three-dimensional (3D) finite-element (FE) analyses were performed in both opening and closing modes of the elbow section for different initial pipe bending angles. To model the mechanical behavior of sands, two soil models were adopted: Mohr-Coulomb and Nor-Sand soil model. Investigations also included the effects of pipe embedment depth and soil density. Results show that the opening mode exhibits higher ultimate forces and greater localized deformations than the closing mode. Nondimensional charts that account for pipeline location, bending angle, and soil density are developed. Soil-spring pipeline analyses of an elbow-pipe were performed using modified F-δ soil-spring models based on the 3D FE results and were compared to the findings of conventional spring model analyses using the standard two-dimensional soil-spring model. Results show that the pipe strain does not change in the closing mode case. However, in the opening mode case, the pipe strain computed by the modified analysis is larger than that by the conventional analysis and the difference is more pronounced when the pipe stiffness is stiffer. © 2011 American Society of Civil Engineers.