951 resultados para Horizontal Differentiation
Resumo:
We report an unusual case of horizontal corneal Descemet's membrane break due to birth trauma. The patient had a difficult birth with trauma to her right eye and poor vision. However unlike the reports in literature, which describe these breaks to have a characteristic vertical or vertically oblique orientation in birth trauma, the breaks in our patient were horizontal. No other cause was found for these Descemet's breaks.
Resumo:
Asthma is a chronic inflammatory disease characterised by airways remodelling. In mouse models IL-9 and IL-13 have been implicated in airways remodelling including mucus hypersecretion and goblet cell hyperplasia. Their role, especially that of IL-9, has been much less studied in authentic human ex vivo models of the bronchial epithelium from normal and asthmatic children. We assessed the effects of IL-9, IL-13 and an IL-9/IL-13 combination, during differentiation of bronchial epithelial cells from normal (n?=?6) and asthmatic (n?=?8) children. Cultures were analysed for morphological markers and factors associated with altered differentiation (MUC5AC, SPDEF and MMP-7). IL-9, IL-9/IL-13 combination and IL-13 stimulated bronchial epithelial cells from normal children had fewer ciliated cells [14.8% (SD 8.9), p?=?0.048, 12.4 (SD 6.1), p?=?0.016 and 7.3% (SD 6.6), p?=?0.031] respectively compared with unstimulated [(21.4% (SD 9.6)]. IL-9 stimulation had no effect on goblet cell number in either group whereas IL-9/IL-13 combination and IL-13 significantly increased goblet cell number [24.8% (SD 8.8), p?=?0.02), 32.9% (SD 8.6), p?=?0.007] compared with unstimulated normal bronchial cells [(18.6% (SD 6.2)]. All stimulations increased MUC5AC mRNA in bronchial epithelial cells from normal children and increased MUC5AC mucin secretion. MMP-7 localisation was dysregulated in normal bronchial epithelium stimulated with Th2 cytokines which resembled the unstimulated bronchial epithelium of asthmatic children. All stimulations resulted in a significant reduction in transepithelial electrical resistance values over time suggesting a role in altered tight junction formation. We conclude that IL-9 does not increase goblet cell numbers in bronchial epithelial cell cultures from normal or asthmatic children. IL-9 and IL-13 alone and in combination, reduce ciliated cell numbers and transepithelial electrical resistance during differentiation of normal epithelium, which clinically could inhibit mucociliary clearance and drive an altered repair mechanism. This suggests an alternative role for IL-9 in airways remodelling and reaffirms IL-9 as a potential therapeutic target.© 2013 Parker et al.
Resumo:
Here, we show for the first time, that the familial breast/ovarian cancer susceptibility gene BRCA1 activates the Notch pathway in breast cells by transcriptional upregulation of Notch ligands and receptors in both normal and cancer cells. We demonstrate through chromatin immunoprecipitation assays that BRCA1 is localized to a conserved intronic enhancer region within the Notch ligand Jagged-1 (JAG1) gene, an event requiring ΔNp63. We propose that this BRCA1/ΔNp63-mediated induction of JAG1 may be important the regulation of breast stem/precursor cells, as knockdown of all three proteins resulted in increased tumoursphere growth and increased activity of stem cell markers such as Aldehyde Dehydrogenase 1 (ALDH1). Knockdown of Notch1 and JAG1 phenocopied BRCA1 knockdown resulting in the loss of Estrogen Receptor-α (ER-α) expression and other luminal markers. A Notch mimetic peptide could activate an ER-α promoter reporter in a BRCA1-dependent manner, whereas Notch inhibition using a γ-secretase inhibitor reversed this process. We demonstrate that inhibition of Notch signalling resulted in decreased sensitivity to the anti-estrogen drug Tamoxifen but increased expression of markers associated with basal-like breast cancer. Together, these findings suggest that BRCA1 transcriptional upregulation of Notch signalling is a key event in the normal differentiation process in breast tissue.
Resumo:
Natural convection heat transfer from a heat generating horizontal cylinder enclosed in a square cavity, where a temperature difference exists across its vertical walls has been experimentally investigated for the range 2×104
Resumo:
Sirolimus-eluting stent therapy has achieved considerable success in overcoming coronary artery restenosis. However, there remain a large number of patients presenting with restenosis after the treatment, and the source of its persistence remains unclarified. Although recent evidence supports the contribution of vascular stem/progenitor cells in restenosis formation, their functional and molecular responses to sirolimus are largely unknown.
Resumo:
Squamous cell carcinoma accounts for 20% of all human lung cancers and is strongly linked to cigarette smoking. It develops through premalignant changes that are characterized by high levels of keratin 14 (K14) expression in the airway epithelium and evolve through basal cell hyperplasia, squamous metaplasia and dysplasia to carcinoma in situ and invasive carcinoma. In order to explore the impact of K14 in the pulmonary epithelium that normally lacks both squamous differentiation and K14 expression, human keratin 14 gene hK14 was constitutively expressed in mouse airway progenitor cells using a mouse Clara cell specific 10 kDa protein (CC10) promoter. While the lungs of CC10-hK14 transgenic mice developed normally, we detected increased expression of K14 and the molecular markers of squamous differentiation program such as involucrin, loricrin, small proline-rich protein 1A, transglutaminase 1 and cholesterol sulfotransferase 2B1. In contrast, wild-type lungs were negative. Aging CC10-hK14 mice revealed multifocal airway cell hyperplasia, occasional squamous metaplasia and their lung tumors displayed evidence for multidirectional differentiation. We conclude that constitutive expression of hK14 initiates squamous differentiation program in the mouse lung, but fails to promote squamous maturation. Our study provides a novel model for assessing the mechanisms of premalignant lesions in vivo by modifying differentiation and proliferation of airway progenitor cells. © The Author 2008. Published by Oxford University Press. All rights reserved.
Ability of marine sponge derived porous HA scaffolds to support bone cell growth and differentiation
Resumo:
Within the management literature, there is an emergent discourse on horizontal collaboration among small and medium-sized enterprises (SMEs), whereby individual rivalries are overcome by the need for more resources and innovation, leading to increased competitiveness through joint product development. In particular, a number of these horizontal collaborations between SMEs have occurred within the agri-food sector. As a consequence, this article aims to explore the longitudinal development of horizontal innovation networks within an artisan bakers’ network as part of the UK SME agri-food sector. An interpretivist research approach was used, whereby the development and evolution of an artisan bakers’ horizontal network was studied over a 27-month period. The findings, as summarised in conceptual models which draw upon knowledge-based open innovation and social network constructs, illustrate that a complex three-stage life cycle development occurred within the bakers’ horizontal network.
Resumo:
Finding a suitable cell source for endothelial cells (ECs) for cardiovascular regeneration is a challenging issue for regenerative medicine. In the paper we describe a novel mechanism regulating induced pluripotent stem cells (iPSC) differentiation into ECs, with a particular focus on miRNAs and their targets. We first established a protocol using collagen IV and VEGF to drive the functional differentiation of iPSCs into ECs and compared the miRNA signature of differentiated and undifferentiated cells. Among the miRNAs overrepresented in differentiated cells, we focused on microRNA-21 (miR-21) and studied its role in iPSC differentiation. Overexpression of miR-21 in pre-differentiated iPSCs induced EC marker upregulation and in vitro and in vivo capillary formation; accordingly, inhibition of miR-21 produced the opposite effects. Importantly, miR-21 overexpression increased TGF-β2 mRNA and secreted protein level, consistent with the strong upregulation of TGF-β2 during iPSC differentiation. Indeed, treatment of iPSCs with TGFβ-2 induced EC marker expression and in vitro tube formation. Inhibition of SMAD3, a downstream effector of TGFβ-2, strongly decreased VE-cadherin expression. Furthermore, TGFβ-2 neutralization and knockdown inhibited miR-21-induced EC marker expression. Finally, we confirmed the PTEN/Akt pathway as a direct target of miR-21 and we showed that PTEN knockdown is required for miR-21 mediated endothelial differentiation. In conclusion, we elucidated a novel signaling pathway that promotes the differentiation of iPSC into functional ECs suitable for regenerative medicine applications.
Resumo:
Lung matrix homeostasis partly depends on the fine regulation of proteolytic activities. We examined the expression of human cysteine cathepsins (Cats) and their relative contribution to TGF-β1-induced fibroblast differentiation into myofibroblasts. Assays were conducted using both primary fibroblasts obtained from patients with idiopathic pulmonary fibrosis (IPF) and human lung CCD-19Lu fibroblasts. Pharmacological inhibition and genetic silencing of Cat B diminished α-smooth muscle actin expression, delayed fibroblast differentiation and led to an accumulation of intracellular 50-kDa TGF-β1. Moreover addition of Cat B generated 25-kDa mature form of TGF-β1 in Cat B siRNA-pretreated lysates. Inhibition of Cat B decreased Smad 2/3 phosphorylation, but had no effect on p38 MAPK and JNK phosphorylation indicating that Cat B mostly disturbs TGF-β1-driven canonical Smad signaling pathway. While mRNA expression of cystatin C was stable, its secretion, which was inhibited by brefeldin A, increased during TGF-β1-induced differentiation of IPF and CCD-19Lu fibroblasts. In addition cystatin C participated in the control of extracellular Cats, since its gene silencing restored their proteolytic activities. These data support the notion that Cat B participates in lung myofibrogenesis as suggested for stellate cells during liver fibrosis. Moreover, we propose that TGF-β1 promotes fibrosis by driving the effective cystatin C-dependent inhibition of extracellular matrix-degrading Cats.
Resumo:
Tofua volcano is situated midway along the Tonga oceanic arc and has undergone two phases of ignimbrite-forming activity. The eruptive products are almost entirely basaltic andesites (52 center dot 5-57 wt % SiO2) with the exception of a volumetrically minor pre-caldera dacite. The suite displays a strong tholeiitic trend with K2O <1 wt %. Phenocryst assemblages typically comprise plagioclase + clinopyroxene +/- orthopyroxene with microlites of Ti-magnetite. Olivine (Fo(83-88)) is rare and believed to be dominantly antecrystic. An increase in the extent and frequency of reverse zoning in phenocrysts, sieve-textured plagioclase and the occurrence of antecrystic phases in post-caldera lavas record a shift to dynamic conditions, allowing the interaction of magma batches that were previously distinct. Pyroxene thermobarometry suggests crystallization at 950-1200 degrees C and 0 center dot 8-1 center dot 8 kbar. Volatile measurements of glassy melt inclusions indicate a maximum H2O content of 4 center dot 16 wt % H2O, and CO2-H2O saturation curves indicate that crystallization occurred at two levels, at depths of 4-5 center dot 5 km and 1 center dot 5-2 center dot 5 km. Major and trace element models suggest that the compositions of the majority of the samples represent a differentiation trend whereby the dacite was produced by 65% fractional crystallization of the most primitive basaltic andesite. Trace element models suggest that the sub-arc mantle source is the residuum of depleted Indian mid-ocean ridge basalt mantle (IDMM-1% melt), whereas radiogenic isotope data imply addition of 0 center dot 2% average Tongan sediment melt and a fluid component derived from the subducted altered Pacific oceanic crust. A horizontal array on the U-Th equiline diagram and Ra excesses of up to 500% suggest fluid addition to the mantle wedge within the last few thousand years. Time-integrated (Ra-226/Th-230) vs Sr/Th and Ba/Th fractionation models imply differentiation timescales of up to 4500 years for the dacitic magma compositions at Tofua.