988 resultados para Hookworm, Necator Americanus, Haemoglobin, Cysteine Protease, Aspartic Protease
Resumo:
Infection with the Gram-negative pathogen Prevotella intermedia gives rise to periodontitis and a growing number of studies implies an association of P. intermedia with rheumatoid arthritis. The serine protease Factor I (FI) is the central inhibitor of complement degrading complement components C3b and C4b in the presence of cofactors such as C4b-binding protein (C4BP) and Factor H (FH). Yet, the significance of complement inhibitor acquisition in P. intermedia infection and FI binding by Gram-negative pathogens has not been addressed. Here we show that P. intermedia isolates bound purified FI as well as FI directly from heat-inactivated human serum. FI bound to bacteria retained its serine protease activity as shown in degradation experiments with (125)I-labeled C4b. Since FI requires cofactors for its activity we also investigated the binding of purified cofactors C4BP and FH and found acquisition of both proteins, which retained their activity in FI mediated degradation of C3b and C4b. We propose that FI binding by P. intermedia represents a new mechanism contributing to complement evasion by a Gram-negative bacterial pathogen associated with chronic diseases.
Resumo:
Background The accumulation of mutations after long-lasting exposure to a failing combination antiretroviral therapy (cART) is problematic and severely reduces the options for further successful treatments. Methods We studied patients from the Swiss HIV Cohort Study who failed cART with nucleoside reverse transcriptase inhibitors (NRTIs) and either a ritonavir-boosted PI (PI/r) or a non-nucleoside reverse transcriptase inhibitor (NNRTI). The loss of genotypic activity <3, 3–6, >6 months after virological failure was analyzed with Stanford algorithm. Risk factors associated with early emergence of drug resistance mutations (<6 months after failure) were identified with multivariable logistic regression. Results Ninety-nine genotypic resistance tests from PI/r-treated and 129 from NNRTI-treated patients were analyzed. The risk of losing the activity of ≥1 NRTIs was lower among PI/r- compared to NNRTI-treated individuals <3, 3–6, and >6 months after failure: 8.8% vs. 38.2% (p = 0.009), 7.1% vs. 46.9% (p<0.001) and 18.9% vs. 60.9% (p<0.001). The percentages of patients who have lost PI/r activity were 2.9%, 3.6% and 5.4% <3, 3–6, >6 months after failure compared to 41.2%, 49.0% and 63.0% of those who have lost NNRTI activity (all p<0.001). The risk to accumulate an early NRTI mutation was strongly associated with NNRTI-containing cART (adjusted odds ratio: 13.3 (95% CI: 4.1–42.8), p<0.001). Conclusions The loss of activity of PIs and NRTIs was low among patients treated with PI/r, even after long-lasting exposure to a failing cART. Thus, more options remain for second-line therapy. This finding is potentially of high relevance, in particular for settings with poor or lacking virological monitoring.
Resumo:
Background Minor protease inhibitor (PI) mutations often exist as polymorphisms in HIV-1 sequences from treatment-naïve patients. Previous studies showed that their presence impairs the antiretroviral treatment (ART) response. Evaluating these findings in a larger cohort is essential. Methods To study the impact of minor PI mutations on time to viral suppression and time to virological failure, we included patients from the Swiss HIV Cohort Study infected with HIV-1 subtype B who started first-line ART with a PI and two nucleoside reverse transcriptase inhibitors. Cox regression models were performed to compare the outcomes among patients with 0 and ≥1 minor PI mutation. Models were adjusted for baseline HIV-1 RNA, CD4 cell count, sex, transmission category, age, ethnicity, year of ART start, the presence of nucleoside reverse transcriptase inhibitor mutations, and stratified for the administered PIs. Results We included 1199 patients of whom 944 (78.7%) received a boosted PI. Minor PI mutations associated with the administered PI were common: 41.7%, 16.1%, 4.7% and 1.9% had 1, 2, 3 or ≥4 mutations, respectively. The time to viral suppression was similar between patients with 0 (reference) and ≥1 minor PI mutation (multivariable hazard ratio (HR): 1.1 [95% confidence interval (CI): 1.0–1.3], P = .196). The time to virological failure was also similar (multivariable HR:.9 [95% CI:.5–1.6], P = .765). In addition, the impact of each single minor PI mutation was analyzed separately: none was significantly associated with the treatment outcome. Conclusions The presence of minor PI mutations at baseline has no effect on the therapy outcome in HIV infected individuals.
Resumo:
A spontaneous mutant (M113) of Escherichia coli AG100 with an unstable multiple antibiotic resistance (Mar) phenotype was isolated in the presence of tetracycline. Two mutations were found: an insertion in the promoter of lon (lon3::IS186) that occurred first and a subsequent large tandem duplication, dupIS186, bearing the genes acrAB and extending from the lon3::IS186 to another IS186 present 149 kb away from lon. The decreased amount of Lon protease increased the amount of MarA by stabilization of the basal quantities of MarA produced, which in turn increased the amount of multidrug effux pump AcrAB-TolC. However, in a mutant carrying only a lon mutation, the overproduced pump mediated little, if any, increased multidrug resistance, indicating that the Lon protease was required for the function of the pump. This requirement was only partial since resistance was mediated when amounts of AcrAB in a lon mutant were further increased by a second mutation. In M113, amplification of acrAB on the duplication led to increased amounts of AcrAB and multidrug resistance. Spontaneous gene duplication represents a new mechanism for mediating multidrug resistance in E. coli through AcrAB-TolC.
Resumo:
BACKGROUND AND OBJECTIVE: Protease inhibitors are highly bound to orosomucoid (ORM) (alpha1-acid glycoprotein), an acute-phase plasma protein encoded by 2 polymorphic genes, which may modulate their disposition. Our objective was to determine the influence of ORM concentration and phenotype on indinavir, lopinavir, and nelfinavir apparent clearance (CL(app)) and cellular accumulation. Efavirenz, mainly bound to albumin, was included as a control drug. METHODS: Plasma and cells samples were collected from 434 human immunodeficiency virus-infected patients. Total plasma and cellular drug concentrations and ORM concentrations and phenotypes were determined. RESULTS: Indinavir CL(app) was strongly influenced by ORM concentration (n = 36) (r2 = 0.47 [P = .00004]), particularly in the presence of ritonavir (r2 = 0.54 [P = .004]). Lopinavir CL(app) was weakly influenced by ORM concentration (n = 81) (r2 = 0.18 [P = .0001]). For both drugs, the ORM1 S variant concentration mainly explained this influence (r2 = 0.55 [P = .00004] and r2 = 0.23 [P = .0002], respectively). Indinavir CL(app) was significantly higher in F1F1 individuals than in F1S and SS patients (41.3, 23.4, and 10.3 L/h [P = .0004] without ritonavir and 21.1, 13.2, and 10.1 L/h [P = .05] with ritonavir, respectively). Lopinavir cellular exposure was not influenced by ORM abundance and phenotype. Finally, ORM concentration or phenotype did not influence nelfinavir (n = 153) or efavirenz (n = 198) pharmacokinetics. CONCLUSION: ORM concentration and phenotype modulate indinavir pharmacokinetics and, to a lesser extent, lopinavir pharmacokinetics but without influencing their cellular exposure. This confounding influence of ORM should be taken into account for appropriate interpretation of therapeutic drug monitoring results. Further studies are needed to investigate whether the measure of unbound drug plasma concentration gives more meaningful information than total drug concentration for indinavir and lopinavir.
Resumo:
BACKGROUND: Mannose-binding lectin-associated serine protease-2 (MASP-2) is an essential component of the lectin pathway of complement activation. MASP-2 deficiency is common because of genetic polymorphisms, but its impact on susceptibility to infection is largely unknown. The aim of the present study was to determine whether children with cancer and MASP-2 deficiency develop more frequent or more severe episodes of fever and severe chemotherapy-induced neutropenia (FN). METHODS: Serum MASP-2 was measured by enzyme-linked immunosorbent assay at the time of diagnosis in children treated with chemotherapy for cancer. Association of FN episodes with MASP-2 concentration was analyzed using Poisson regression accounting for chemotherapy intensity and duration. RESULTS: Median MASP-2 in 94 children was 527 ng/mL (interquartile range, 367-686). Nine (10%) children had MASP-2 deficiency (<200 ng/mL). During a cumulative chemotherapy exposure time of 82 years, 177 FN episodes were recorded. MASP-2 deficient children had a significantly increased risk of developing FN (multivariate risk ratio, 2.08; 95% confidence interval, 1.31-3.21; P = 0.002), translating into significantly prolonged cumulative duration of hospitalization and of intravenous antimicrobial therapy. They experienced significantly more episodes of FN without a microbiologically defined etiology, and there was a trend toward more frequent episodes of FN with bacteremia. CONCLUSION: In this study, MASP-2 deficiency was associated with an increased risk of FN in children treated with chemotherapy for cancer. MASP-2 deficiency represents a novel risk factor for chemotherapy-related infections.
Resumo:
Site-1 protease (S1P) has an essential function in the conversion of latent, membrane-bound transcription factors to their free, active form. In mammals, abundant expression of S1P in chondrocytes suggests an involvement in chondrocyte function. To determine the requirement of S1P in cartilage and bone development, we have created cartilage-specific S1P knockout mice (S1P(cko)). S1P(cko) mice exhibit chondrodysplasia and a complete lack of endochondral ossification even though Runx2 expression, Indian hedgehog signaling, and osteoblastogenesis is intact. However, there is a substantial increase in chondrocyte apoptosis in the cartilage of S1P(cko) mice. Extraction of type II collagen is substantially lower from S1P(cko) cartilage. In S1P(cko) mice, the collagen network is disorganized and collagen becomes entrapped in chondrocytes. Ultrastructural analysis reveals that the endoplasmic reticulum (ER) in S1P(cko) chondrocytes is engorged and fragmented in a manner characteristic of severe ER stress. These data suggest that S1P activity is necessary for a specialized ER stress response required by chondrocytes for the genesis of normal cartilage and thus endochondral ossification.
Resumo:
OBJECTIVE: Impaired endothelial function was demonstrated in HIV-infected persons on protease inhibitor (PI)-containing antiretroviral therapy, probably due to altered lipid metabolism. Atazanavir is a PI causing less atherogenic lipoprotein changes. This study determined whether endothelial function improves after switching from other PI to atazanavir. DESIGN: Randomised, observer-blind, treatment-controlled trial. SETTING: Three university-based outpatient clinics. PATIENTS: 39 HIV-infected persons with suppressed viral replication on PI-containing regimens and fasting low-density lipoprotein (LDL)-cholesterol greater than 3 mmol/l. INTERVENTION: Patients were randomly assigned to continue the current PI or change to unboosted atazanavir. MAIN OUTCOME MEASURES: Endpoints at week 24 were endothelial function assessed by flow-mediated dilation (FMD) of the brachial artery, lipid profiles and serum inflammation and oxidative stress parameters. RESULTS: Baseline characteristics and mean FMD values of the two treatment groups were comparable (3.9% (SD 1.8) on atazanavir versus 4.0% (SD 1.5) in controls). After 24 weeks' treatment, FMD decreased to 3.3% (SD 1.4) and 3.4% (SD 1.7), respectively (all p = ns). Total cholesterol improved in both groups (p<0.0001 and p = 0.01, respectively) but changes were more pronounced on atazanavir (p = 0.05, changes between groups). High-density lipoprotein and triglyceride levels improved on atazanavir (p = 0.03 and p = 0.003, respectively) but not in controls. Serum inflammatory and oxidative stress parameters did not change; oxidised LDL improved significantly in the atazanavir group. CONCLUSIONS: The switch from another PI to atazanavir in treatment-experienced patients did not result in improvement of endothelial function despite significantly improved serum lipids. Atherogenic lipid profiles and direct effects of antiretroviral drugs on the endothelium may affect vascular function. Trial registration number: NCT00447070.
Resumo:
BACKGROUND: Over the last 4 years ADAMTS-13 measurement underwent dramatic progress with newer and simpler methods. AIMS: Blind evaluation of newer methods for their performance characteristics. DESIGN: The literature was searched for new methods and the authors invited to join the evaluation. Participants were provided with a set of 60 coded frozen plasmas that were prepared centrally by dilutions of one ADAMTS-13-deficient plasma (arbitrarily set at 0%) into one normal-pooled plasma (set at 100%). There were six different test plasmas ranging from 100% to 0%. Each plasma was tested 'blind' 10 times by each method and results expressed as percentage vs. the local and the common standard provided by the organizer. RESULTS: There were eight functional and three antigen assays. Linearity of observed-vs.-expected ADAMTS-13 levels assessed as r2 ranged from 0.931 to 0.998. Between-run reproducibility expressed as the (mean) CV for repeated measurements was below 10% for three methods, 10-15% for five methods and up to 20% for the remaining three. F-values (analysis of variance) calculated to assess the capacity to distinguish between ADAMTS-13 levels (the higher the F-value, the better the capacity) ranged from 3965 to 137. Between-method variability (CV) amounted to 24.8% when calculated vs. the local and to 20.5% when calculated vs. the common standard. Comparative analysis showed that functional assays employing modified von Willebrand factor peptides as substrate for ADAMTS-13 offer the best performance characteristics. CONCLUSIONS: New assays for ADAMTS-13 have the potential to make the investigation/management of patients with thrombotic microangiopathies much easier than in the past.
Resumo:
Necrotising enterocolitis (NEC) causes significant morbidity and mortality in premature infants. The role of innate immunity in the pathogenesis of NEC remains unclear. Mannose-binding lectin (MBL) recognizes microorganisms and activates the complement system via MBL-associated serine protease-2 (MASP-2). The aim of this study was to investigate whether MBL and MASP-2 are associated with NEC. This observational case-control study included 32 infants with radiologically confirmed NEC and 64 controls. MBL and MASP-2 were measured in cord blood using ELISA. Multivariate logistic regression was performed. Of the 32 NEC cases (median gestational age, 30.5 wk), 13 (41%) were operated and 5 (16%) died. MASP-2 cord blood concentration ranged from undetectable (<10 ng/mL) to 277 ng/mL. Eighteen of 32 (56%) NEC cases had higher MASP-2 levels (> or =30 ng/mL) compared with 22 of 64 (34%) controls (univariate OR 2.46; 95% CI 1.03-5.85; p = 0.043). Higher cord blood MASP-2 levels were significantly associated with an increased risk of NEC in multivariate analysis (OR 3.00; 95% CI 1.17-7.93; p = 0.027). MBL levels were not associated with NEC (p = 0.64). In conclusion, infants later developing NEC had significantly higher MASP-2 cord blood levels compared with controls. Higher MASP-2 may favor complement-mediated inflammation and could thereby predispose to NEC.
Resumo:
BACKGROUND: Mannose-binding lectin (MBL) and MBL-associated serine protease-2 (MASP-2) are key components of the lectin pathway of complement activation. Their serum concentrations show a wide interindividual variability. This study investigated whether the concentration of MBL and MASP-2 is associated with prognosis in pediatric patients with cancer. METHODS: In this retrospective multicenter study, MBL and MASP-2 were measured by commercially available ELISA in frozen remnants of serum taken at diagnosis. Associations of overall survival (OS) and event-free survival (EFS) with MBL and MASP-2 were assessed by multivariate Cox regression accounting for prognostically relevant clinical variables. RESULTS: In the 372 patients studied, median serum concentration of MBL was 2,808 microg/L (range, 2-10,060) and 391 microg/L (46-2,771) for MASP-2. The estimated 4-year EFS was 0.60 (OS, 0.78). In the entire, heterogeneous sample, MBL and MASP-2 were not significantly associated with OS or EFS. In patients with hematologic malignancies, however, higher MASP-2 was associated with better EFS in a significant and clinically relevant way (hazard ratio per tenfold increase (HR), 0.22; 95% CI, 0.09-0.54; P = 0.001). This was due to patients with lymphoma (HR, 0.11; 95% CI, 0.03-0.47; P = 0.003), but less for those with acute leukemia (HR, 0.35; 95% CI, 0.11-1.15; P = 0.083). CONCLUSION: In this study, higher MASP-2 was associated with better EFS in pediatric patients with hematologic malignancies, especially lymphoma. Whether MASP-2 is an independent prognostic factor affecting risk stratification and anticancer therapy needs to be assessed in prospective, disease-specific studies.
Resumo:
Advanced glycation end products (AGEs) may play a role in the pathogenesis of diabetic nephropathy, by modulating extracellular matrix turnover. AGEs are known to activate specific membrane receptors, including the receptor for AGE (RAGE). In the present study, we analyzed the various receptors for AGEs expressed by human mesangial cells and we studied the effects of glycated albumin and of carboxymethyl lysine on matrix protein and remodelling enzyme synthesis. Membrane RAGE expression was confirmed by FACS analysis. Microarray methods, RT-PCR, and Northern blot analysis were used to detect and confirm specific gene induction. Zymographic analysis and ELISA were used to measure the induction of tPA and PAI-1. We show herein that cultured human mesangial cells express AGE receptor type 1, type 2 and type 3 and RAGE. AGEs (200 microg/ml) induced at least a 2-fold increase in mRNA for 10 genes involved in ECM remodelling, including tPA, PAI-1 and TIMP-3. The increase in tPA synthesis was confirmed by fibrin zymography. The stimulation of PAI-1 synthesis was confirmed by ELISA. AGEs increased PAI-1 mRNA through a signalling pathway involving reactive oxygen species, the MAP kinases ERK-1/ERK-2 and the nuclear transcription factor NF-kappaB, but not AP-1. Carboxymethyl lysine (CML, 5 microM), which is a RAGE ligand, also stimulated PAI-1 synthesis by mesangial cells. In addition, a blocking anti-RAGE antibody partially inhibited the AGE-stimulated gene expression and decreased the PAI-1 accumulation induced by AGEs and by CML. Inhibition of AGE receptors or neutralization of the protease inhibitors TIMP-3 and PAI-1 could represent an important new therapeutic strategy for diabetic nephropathy.
Resumo:
Background. It is unknown whether serum concentrations of mannan-binding lectin (MBL) and MBL-associated serine protease-2 (MASP-2) influence the risk of adverse events (AEs) in children with cancer presenting with fever in neutropenia (FN). Methods. Pediatric patients with cancer presenting with FN after non-myeloablative chemotherapy were observed in a prospective multicenter study. Mannan-binding lectin and MASP-2 were measured using commercially available enzyme-linked immunosorbent assay in serum taken at cancer diagnosis. Multiple FN episodes per patient were allowed. Associations of MBL and MASP-2 with AE in general, with bacteremia, and with serious medical complications (SMC) during FN were analyzed using mixed logistic regression. Results. Of 278 FN episodes, AE was reported in 84 (30%), bacteremia was reported in 42 (15%), and SMC was reported in 16 (5.8%). Median MBL was 2152 ng/mL (range, 7–10 060). It was very low (<100) in 11 (9%) patients, low (100–999) in 36 (29%) patients, and normal (�1000) in 79 (63%) patients. Median MASP-2 was 410 ng/mL (range, 68–2771). It was low (<200) in 18 (14%) patients and normal in the remaining 108 (86%) patients. Mannan-binding lectin and MASP-2 were not significantly associated with AE or bacteremia. Normal versus low MBL was independently associated with a significantly higher risk of SMC (multivariate odds ratio, 12.8; 95% confidence interval, 1.01–163; P = .050). Conclusions. Mannan-binding lectin and MASP-2 serum concentrations were not found to predict the risk to develop AEs or bacteremia during FN. Normal MBL was associated with an increased risk of SMC during FN. This finding, in line with earlier studies, does not support the concept of MBL supplementation in MBL-deficient children with cancer presenting with FN.
Resumo:
The serine protease CAP1/Prss8 is crucial for skin barrier function, lung alveolar fluid clearance and has been unveiled as diagnostic marker for specific cancer types. Here, we show that a constitutive knockout of CAP1/Prss8 leads to embryonic lethality. These embryos presented no specific defects, but it is during this period, and in particular at E13.5, that wildtype placentas show an increased expression of CAP1/Prss8, thus suggesting a placental defect in the knockout situation. The placentas of knockout embryos exhibited significantly reduced vascular development and incomplete cellular maturation. In contrary, epiblast-specific deletion of CAP1/Prss8 allowed development until birth. These CAP1/Prss8-deficient newborns presented abnormal epidermis, and died soon after birth due to impaired skin function. We thus conclude that a late placental insufficiency might be the primary cause of embryonic lethality in CAP1/Prss8 knockouts. This study highlights a novel and crucial role for CAP1/Prss8 in placental development and function.