896 resultados para Histograms of Oriented Gradients
Resumo:
Two commercial biaxially oriented polypropylene (BOPP) resins, resin A and resin B, having different processing properties, were fractionated by preparative temperature-rising elution fractionation (TREF). The TREF fractions were further characterized by gel permeation chromatography (GPC), gel permeation chromatography coupled with light scattering (GPC-LS), wide-angle X-ray diffraction (WAXD), and differential scanning calorimetry (DSC). GPC-LS did not find visible long-chain branching in either resin A or B. The results from TREF and DSC indicate that the fractional melting parameter f(T) may be used to predict the profile of the TREF cumulative weight distribution curve. GPC results show that the molecular weights of the fractions tend to increase with elution temperature. WAXD and DSC data show that the crystallinity of fractions does not increase monotonically with increase of elution temperature. There appears to be a maximum in the plot of crystallinity versus elution temperature. The high-speed BOPP resin A has a lower isotacticity but a homogeneous isotacticity distribution and a higher molecular weight but a broader molecular weight distribution than resin B.
Resumo:
The PVT data of five kinds of biaxially oriented polypropylene (BOPP) Resins was measured by the PVT-100 apparatus. Thermal expansion coefficients (alpha) and isothermal compressibility (beta) were evaluated from Tait equation in the melting state and then compared with those fitted with the value of experiment. The results showed that it was reasonable to calculate alpha and beta with Tait equation in the melting state. At the same time, it was found that thermal expansion coefficients, isothermal compressibility and the melting temperature (T-m) of one of BOPP melts (S28C) were lower than those of the others in the same test conditions, indicating that the volume deformation of S28C resin is' less so that it could be realized to avoid arising surface defects of the film (biaxially oriented polypropylene film) due to. contracting, thereby decrease damage to the film in the subsequence process. Accordingly superior processing properties of S28C resin are confirmed from PVT. speciality.
Resumo:
The crystallization behaviors of poly (3-dodecylthiophene) (P3DDT) under two different oriented solidification conditions, i.e.. two different relative relations (90 degrees and 180 degrees) between the directions of gravity and solidification, were investigated. X-ray diffraction results reveal that although similar layered structures are formed, under the condition of the relative relation 180 degrees. temperature gradient has greater effects on the perfect degree of the layered structures of P3DDT. It also can be concluded that after recrystallization, the layered structures of P3DDT can be improved at relative relation 90 degrees, but the orderly degree of the arrangements of alkyl side chains are not improved yet, even is reduced for both of the oriented solidification conditions.
Resumo:
Highly oriented pyrolytic graphite (HOPG) is the substrate often used in scanning tunneling microscopy (STM). It is well known that STM images of the basal plane of HOPG show some unusual structural patterns. In this letter, we present in situ STM images of some unusual features on HOPG in solutions, including normal or abnormal chain-like features and hexagonal or oblique superperiodic structures. These features emerge both next to and apart from the step of HOPG.
Resumo:
The controlling factors for the epitaxial crystallization of high-density polyethylene (HDPE) on highly oriented isotactic polypropylene (iPP) substrates have been studied in detail by means of transmission electron microscopy and electron diffraction. The results obtained in this work indicate that the crystallization process must be considered in the investigation of epitaxial growth of polymers on polymeric substrates, because of the unique morphological and crystallization characteristics of polymers. Crystallization rate has an important effect on the epitaxial crystallization of polymers. Higher rates result in the formation of thicker epitaxial layers. Isothermal crystallization temperature is another factor affecting epitaxial growth of polymers. Lower temperatures are favorable to epitaxial crystallization of polymers. There exists a critical epitaxial temperature at given experimental conditions, above which no epitaxial growth occurs at all. The influence of crystal dimensions of both the substrates and the deposited polymers on epitaxial growth confirms that secondary nucleation is an important controlling factor for the occurrence of epitaxial crystallization in polymers. The requirement satisfying the secondary nucleation criterion is that the substrate crystal dimension in the matching direction must be greater than the crystal thickness of the deposited polymer. Once the requirement of the secondary nucleation is satisfied, subsequent epitaxial growth is based on the lamellar growth habit of the deposited polymer itself. (C) 1998 Published by Elsevier Science Ltd. All rights reserved.
Resumo:
The denaturation of cytochrome-e (cyt-c) induced by bromopyrogal red (BPR) was studied by scanning tunnelling microscopy (STM) on the electrochemically pretreated highly oriented pyrolytic graphite (HOPG) surface. STM images reveal that denatured cyt-c molecules exist in variable states including aggregates, globular compact, partially unfolded and combined with BPR molecule. The apparently low image contrast of denatured cyt-c observed in this experiment comparing to that of native cyt-c molecules, and the relative low image contrast of the unfolded part comparing with the compact globular part, are ascribed to the unfavourable tunnelling paths for the conformational variations of denatured cyt-c molecules. (C) 1997 Elsevier Science B.V.
Resumo:
The recrystallization behavior of high-density polyethylene (HDPE) on the highly oriented isotactic polypropylene (iPP) substrates at temperatures below the melting temperature of HDPE has been investigated by means of transmission electron microscopy. The results obtained by the bright-field observation and the electron diffraction show that upon annealing the HDPE-quenched films on the oriented iPP substrates at temperatures below 125 degrees C, only a small amount of HDPE recrystallizes on the iPP substrate with [001](HDPE)//[001](iPP), while annealing the HDPE-quenched films at temperatures above 125 degrees C, all of the HDPE crystallites recrystallize epitaxially on the iPP substrate with [001](HDPE)//[101](iPP). (C) 1997 John Wiley & Sons, Inc.
Resumo:
A special electrodeposition process of palladium was studied by cyclic voltammetry, X-ray photoelectron spectroscopy (XPS) and in situ scanning tunneling microscopy (STM). A kind of palladium(IV) complex was attached to the highly oriented pyrolytic graphite (HOPG) electrode surface by electro-oxidation of palladium(II) complex first, and was then reduced to palladium particles. The surface complexes and particles of palladium were both characterized by in situ STM and XPS. The Pd particles are in the nanometer range of size and exhibit electrocatalytic activity towards the oxidation of hydrazine and hydroxylamine.
Resumo:
The dynamic states of cytochrome c multilayers on electrochemically pretreated highly oriented pyrolytic graphite (HOPG) have been studied by in-situ scanning tunnelling microscopy (STM) under potential control of both the tip and the substrate in cytochrome c and phosphate buffer solution. The dynamic characterization of cytochrome c multilayers and relatively stable adsorbed single cytochrome c molecules scattered on HOPG imply that physically adsorbed multilayers were more easily influenced by the STM tip than those of chemically adsorbed single molecules. In-situ STM images of chemically adsorbed cytochrome c molecules with discernible internal structures on HOPG revealed that morphologies of cytochrome c molecules also suffered tip influence; possible tip-sample-substrate interactions have been discussed.
Resumo:
The effects of lamellar thickness on the epitaxial crystallization of polyethylene on the oriented isotatic polypropylene have been studied by means of transmission electron microscopy. The results obtained from the bright field electron microscopy and electron diffraction show that the epitaxial orientation of the PE crystals on the iPP substrate depends not only on the thickness of the oriented iPP lamellae, but also on the lamellar thickness of PE crystals. No epitaxial orientation relationship between PE crystal and iPP substrate can be found, when the PE crystals are thicker than the lamellar thickness of iPP along the matching direction. This suggests, that the epitaxial nucleation of PE in the PE/iPP epitaxial system is controlled not only by the chain-row matching, but also by a secondary nucleation process.
Resumo:
Molecular layer of tungstosilicic acid (H4SiW12O40) deposited on freshly-cleaved highly oriented pyrolytic graphite (HOPG) was observed by scanning tunneling microscopy (STM) in air at room temperature. The molecular dimension (11.5 Angstrom) of H4SiW12O40 measured by STM is consistent with known crystallographic parameter. We also imaged the boundary of H4SiW12O40 molecular layer on HOPG showing that molecular layer of H4SiW12O40 was formed. It has been proved that individual tungstosilicic acid species is imaged. The probable reason for the formation of the molecular layer is also discussed.
Resumo:
Effects of the potential of anodic oxidation and of potential cycling on the surface structure of a highly oriented pyrolytic graphite (HOPG) electrode were observed by in situ electrochemical scanning tunnelling microscopy (ECSTM) in dilute H2SO4 solution with atomic resolution. With potential cycling between -0.1 V and 1.8 V vs. Ag/AgCl (sat. KCI), some atoms on the top layer of HOPG protrude out of the base plane, and the graphite lattice of these protrusions is still intact but is strained and expanded. With further potential cycling, some protrusions coalesced and some grew larger, and an anomalous superperiodic feature was observed (spacing 90 Angstrom with a rotation 30 degrees relative to atomic corrugations) which superimposed on the atomic corrugation of HOPG. On the topmost of these protrusions, some atoms form oxides and others are still resolved by the ECSTM image. With potential cycling between -0.1 V and + 2.0 V vs. Ag/AgCl (sat. KCl), damage to freshly cleaved HOPG surface is more serious and fast, some ridges are observed, the atomic structure of the HOPG surface is partially and then completely damaged due to the formation of oxide. We also found that anodic oxidation occurred nonuniformly on the surface of HOPG near defects during potential cycling.
Resumo:
The epitaxial crystallization behavior of high-density polyethylene on the boundary of highly oriented isotactic polypropylene (iPP) substrates has been investigated by means of atomic force microscopy (AFM) and transmission electron microscopy (TEM). The results obtained from AFM and TEM indicate that the epitaxial nucleation of HDPE on the highly oriented iPP substrates occurs earlier than that in the pure HDPE phase, i.e., homogeneous nucleation. Therefore the epitaxially grown HDPE lamellae can grow across the boundary of the iPP substrate into the HDPE spherulitic phase with the epitaxial orientation relationship remaining.
Resumo:
The variation in molecule adsorption mode on pretreated highly oriented pyrolytic graphite electrodes, modified with the title complex K10H3[Dy(SiMo11O39)(2)] by cyclic voltammetry in the title complex solution, was observed in situ by electrochemical scanning tunnelling microscopy (ECSTM) with molecular resolution in sodium sulphate solution. According to the ECSTM images and the known molecular structure we conclude that the adsorption mode of the title complex modified electrode changed during potential cycling from ''vertical'' to ''inclined'' and then ''horizontal'' or ''flat'' mode, i.e. the title complex adsorbed on the surface of electrode by one ligand of the complex at first, then began to incline and was finally adsorbed by two ligands of the complex. This result indicates that the adsorption mode on the modified electrode surface changed during potential cycling in the sulphate solution and a much more stable molecular layer was formed. The change in adlattice of adsorbates on the modified electrode surface from hexagonal to rectangular was also observed by ECSTM. A plausible model was given to explain this process.