883 resultados para High-dose fentanyl


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Aim The aim of this systematic review was to assess the quality and outcomes of clinical trials investigating the effect of St John's wort extracts on the metabolism of drugs by CYP3A. Methods Prospective clinical trials assessing the effect of St John's wort (SJW) extracts on metabolism by CYP3A were identified through computer-based searches (from their inception to May 2005) of Medline, Cinahl, PsycINFO, AMED, Current Contents and Embase, hand-searches of bibliographies of relevant papers and consultation with manufacturers and researchers in the field. Two reviewers selected trials for inclusion, independently extracted data and recorded details on study design. Results Thirty-one studies met the eligibility criteria. More than two-thirds of the studies employed a before-and-after design, less than one-third of the studies used a crossover design, and only three studies were double-blind and placebo controlled. In 12 studies the SJW extract had been assayed, and 14 studies stated the specific SJW extract used. Results from 26 studies, including all of the 19 studies that used high-dose hyperforin extracts (> 10 mg day(-1)), had outcomes consistent with CYP3A induction. The three studies using low-dose hyperforin extracts (< 4 mg day(-1)) demonstrated no significant effect on CYP3A. Conclusion There is reasonable evidence to suggest that high-dose hyperforin SJW extracts induce CYP3A. More studies are required to determine whether decreased CYP3A induction occurs after low-dose hyperforin extracts. Future studies should adopt study designs with a control phase or control group, identify the specific SJW extract employed and provide quantitative analyses of key constituents.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A randomized double-blind Phase I Trial was conducted to evaluate safety, tolerability, and immunogenicity of a yellow fever (YF)-dengue 2 (DEN2) chimera (ChimeriVax™-DEN2) in comparison to that of YF vaccine (YF-VAX®). Forty-two healthy YF naïve adults randomly received a single dose of either ChimeriVax™-DEN2 (high dose, 5 log plaque forming units [PFU] or low dose, 3 log PFU) or YF-VAXâ by the subcutaneous route (SC). To determine the effect of YF pre-immunity on the ChimeriVaxTM-DEN2 vaccine, 14 subjects previously vaccinated against YF received a high dose of ChimeriVax™-DEN2 as an open-label vaccine. Most adverse events were similar to YF-VAX® and of mild to moderate intensity, with no serious side-effects. One hundred percent and 92.3% of YF naïve subjects inoculated with 5.0 and 3.0 log10 PFU of ChimeriVaxTM-DEN2, respectively, seroconverted to wt DEN2 (strain 16681); 92% of subjects inoculated with YF-VAX® seroconverted to YF 17D virus but none of YF naïve subjects inoculated with ChimeriVax-DEN2 seroconverted to YF 17D virus. Low seroconversion rates to heterologous DEN serotypes 1, 3, and 4 were observed in YF naïve subjects inoculated with either ChimeriVax™-DEN2 or YF-VAX®. In contrast, 100% of YF immune subjects inoculated with ChimeriVax™-DEN2 seroconverted to all 4 DEN serotypes. Surprisingly, levels of neutralizing antibodies to DEN 1, 2, and 3 viruses in YF immune subjects persisted after 1 year. These data demonstrated that 1) the safety and immunogenicity profile of the ChimeriVax™-DEN2 vaccine is consistent with that of YF-VAX®, and 2) pre-immunity to YF virus does not interfere with ChimeriVaxTM-DEN2 immunization, but induces a long lasting and cross neutralizing antibody response to all 4 DEN serotypes. The latter observation can have practical implications toward development of a dengue vaccine.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We have previously tested the effects of high dose AA supplements on human volunteers in terms of reducing DNA damage, as a possible mechanism of the vitamin’s proposed protective effect against cancer and detected a transient, pro-oxidant effect at high doses (500 mg/day). Herein, we present evidence of a pro-oxidant effect of the vitamin when added to CCRF cells at extracellular concentrations which mimic those present in human serum in vivo (50–150AM). The activation of the transcription factor AP-1 was optimal at 100 AM AA following 3h exposure at 37jC. A minimum dose of 50 AM of AA activated NFnB but there appeared to be no dose-dependent effect. Increases of 2–3 fold were observed for both transcription factors when cells were exposed to 100 AM AA for 3h, comparing well with the pro-oxidant effect of H2O2 at similar concentrations. In parallel experiments the activation of AP-1 (binding to DNA) was potentiated when cells were pre-incubated with AA prior to exposure with H2O2. Cycloheximide pretreatment (10 Ag/ml for 15min) caused a 50% inhibition of AP-1 binding to DNA suggesting that it was due to a combination of increasing the binding of pre-existing Fos and Jun and an increase in their de novo synthesis. Cellular localisation was confirmed by immunocytochemistry using antibodies specific for c-Fos and c-Jun proteins. These results suggest that extracellular AA can elicit an intracellular stress response resulting in the activation of the oxidative stress-responsive transcription factors AP-1 and NFnB. These transcription factors are involved in the induction of genes associated with an oxidative stress response, cell cycle arrest and DNA repair confirmed by our cDNA microarray analysis (Affymetrix). This may explain the abilty for AA to appear to inhibit 8-oxodG, yet simultaneously generate another oxidative stress biomarker, 8-oxo-dA. These results suggest a completely novel DNA repair action for AA. Whether this action is relevant to our in vivo findings will be the subject of our future research.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the present study I investigated the mechanisms of modulation of neuronal network activity in rat primary motor cortex using pharmacological manipulations employing the in vitro brain slice technique. Preparation of the brain slice in sucrose-based aCSF produced slices with low viability. Introducing the neuroprotectants N-acetyl-cysteine, taurine and aminoguanidine to the preparatory method saw viability of slices increase significantly. Co-application of low dose kainic acid and carbachol consistently generated beta oscillatory activity in M1. Analyses indicated that network activity in M1 relied on the involvement of GABAA receptors. Dose-response experiments performed in M1 showed that beta activity can be modulated by benzodiazepine site ligands. Low doses of positive allosteric modulators consistently desynchronised beta oscillatory activity, a mechanism that may be driven by a1-subunit containing GABAA receptors. Higher doses increased the power of beta oscillatory activity. Whole-cell recordings in M1 uncovered three interneuronal subtypes regularly encountered in M1; Fast-spiking, regular-spiking non-Pyramidal and low threshold spiking. With the paradoxical effects of positive allosteric modulators in mind, subsequent voltage-clamp recordings in FS cells revealed a constitutively active tonic inhibitory current that could be modulated by zolpidem in two different ways. Low dose zolpidem increased the tonic inhibitory current in FS cells, consistent with the desynchronisation of network oscillatory activity seen at this concentration. High dose zolpidem decreased the inhibitory tonic current seen in FS cells, coinciding with an increase in oscillatory power. These studies indicate a fundamental role for a tonic inhibitory current in the modulation of network activity. Furthermore, desynchronisation of beta activity in M1 decreased as viability of the in vitro brain slice increased, suggesting that the extent of desynchronisation is dependent upon the pathophysiological state of the network. This indicates that low dose zolpidem could be used as a therapeutic agent specifically for the desynchronisation of pathological oscillations in oscillopathies such as Parkinson’s disease.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The role of oxidation in the development of age-related eye disease has prompted interest in the use of nutritional supplementation for prevention of onset and progression. Our aim is to highlight possible contraindications and adverse reactions of isolated or high dose ocular nutritional supplements. Web of Science and PubMed database searches were carried out, followed by a manual search of the bibliographies of retrieved articles. Vitamin A should be avoided in women who may become pregnant, in those with liver disease, and in people who drink heavily. Relationships have been found between vitamin A and reduced bone mineral density, and beta-carotene and increased risk of lung cancer in smoking males. Vitamin E and Ginkgo biloba have anticoagulant and anti-platelet effects respectively, and high doses are contraindicated in those being treated for vascular disorders. Those patients with contraindications or who are considered at risk of adverse reactions should be advised to seek specialist dietary advice via their medical practitioner. © 2005 The College of Optometrists.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

NADPH oxidase (Nox)-derived reactive oxygen species (ROS) are known to be involved in angiotensin II-induced hypertension and endothelial dysfunction. Several Nox isoforms are expressed in the vessel wall, among which Nox2 is especially abundant in the endothelium. Endothelial Nox2 levels rise during hypertension but little is known about the cell-specific role of endothelial Nox2 in vivo. To address this question, we generated transgenic mice with endothelial-specific overexpression of Nox2 (Tg) and studied the effects on endothelial function and blood pressure. Tg had an about twofold increase in endothelial Nox2 levels which was accompanied by an increase in p22phox levels but no change in levels of other Nox isoforms or endothelial nitric oxide synthase (eNOS). Basal NADPH oxidase activity, endothelial function and blood pressure were unaltered in Tg compared to wild-type littermates. Angiotensin II caused a greater increase in ROS production in Tg compared to wild-type aorta and attenuated acetylcholine-induced vasorelaxation. Both low and high dose chronic angiotensin II infusion increased telemetric ambulatory blood pressure more in Tg compared to wild-type, but with different patterns of BP change and aortic remodeling depending upon the dose of angiotensin II dose. These results indicate that an increase in endothelial Nox2 levels contributes to angiotensin II-induced endothelial dysfunction, vascular remodeling and hypertension. © 2011 The Author(s).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A simple elementary osmotic pump (EOP) system that could deliver metformin hydrochloride (MT) and glipizide (GZ) simultaneously for extended periods of time was developed in order to reduce the problems associated with multidrug therapy of type 2 non-insulin-dependent diabetes mellitus. In general, both highly and poorly water-soluble drugs are not good candidates for elementary osmotic delivery. However, MT is a highly soluble drug with a high dose (500 mg) while GZ is a water-insoluble drug with a low dose (5 mg) so it is a great challenge to pharmacists to provide satisfactory extended release of MT and GZ. In this paper sodium carbonate was used to modulate the solubility of GZ within the core and MT was not only one of the active ingredients but also the osmotic agent. The optimal EOP was found to deliver both drugs at a rate of approximately zero order for up to 10 h in pH 6.8, independent of environment media. In-vivo evaluation was performed relative to the equivalent dose of conventional MT tablet and GZ tablet by a cross-study in six Beagle dogs. The EOP had a good sustained effect in comparison with the conventional product. The prototype design of the system could be applied to other combinations of drugs used for cardiovascular diseases, diabetes, etc.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

α-Lipoic acid, dihydrolipoic acid (DHLA), N-acetyl cysteine and ascorbate were compared with methylene blue for their ability to attenuate and/or reduce methaemoglobin formation induced by sodium nitrite, 4-aminophenol and dapsone hydroxylamine in human erythrocytes. Neither α-lipoic acid, DHLA, N-acetyl cysteine nor ascorbate had any significant effects on methaemoglobin formed by nitrite, either from pre-treatment, simultaneous addition or post 30 min addition of the agents up to the 60 min time point, although N-acetyl cysteine did reduce methaemoglobin formation at 120 min (P<0.05). In all three treatment groups at 30, 60 and 120 min, there were no significant effects mediated by DHLA or N-acetyl cysteine on 4-aminophenol (1 mM)-mediated haemoglobin oxidation. Ascorbate caused marked significant reductions in 4-aminophenol methaemoglobin in all treatment groups at 30-120 min except at 30 min in the simultaneous addition group (P<0.0001). Neither α-lipoic acid, nor N-acetyl cysteine showed any effects on hydroxylamine-mediated methaemoglobin formation at 30 and 60 in all treatment groups. In contrast, DHLA significantly reduced hydroxylamine-mediated methaemoglobin formation at all three time points after pre-incubation and simultaneous addition (P<0.001), while ascorbate was ineffective. Compared with methylene blue, which was effective in reducing methaemoglobin formation by all three toxins (P<0.01), ascorbate was only highly effective against 4-aminophenol mediated methaemoglobin, whilst the DHLA-mediated attenuation of dapsone hydroxylamine-mediated methaemoglobin formation indicates a possible clinical application in high-dose dapsone therapy. © 2003 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Progression and severity of type 1 diabetes is dependent upon inflammatory induction of nitric oxide production and consequent pancreatic β-cell damage. Glucocorticoids (GCs) are highly effective anti-inflammatory agents but have been precluded in type 1 diabetes and in islet transplantation protocols because they exacerbated insulin resistance and suppressed β-cell insulin secretion at the high-doses employed clinically. In contrast, physiological-range elevation of GC action within β-cells ameliorated lipotoxic β-cell failure in transgenic mice overexpressing the intracellular enzyme 11β-hydroxysteroid dehydrogenase type 1 (MIP-HSD1tg/+ mice). Here, we tested the hypothesis that elevated β-cell 11beta-HSD1 protects against the β-cell destruction elicited by streptozotocin (STZ), a toxin that dose-dependently mimics aspects of inflammatory and autoimmune β-cell destruction. MIP-HSD1tg/+ mice exhibited an episodic protection from the severe hyperglycemia caused by a single high dose of STZ associated with higher and sustained β-cell survival, maintained β-cell replicative potential, higher plasma and islet insulin levels, reduced inflammatory macrophage infiltration and increased anti-inflammatory T regulatory cell content. MIP-HSD1tg/+ mice also completely resisted mild hyperglycemia and insulitis induced by multiple low-dose STZ administration. In vitro, MIP-HSD1tg/+ islets exhibited attenuated STZ-induced nitric oxide production, an effect reversed with a specific 11beta-HSD1 inhibitor. GC regeneration selectively within β-cells protects against inflammatory β-cell destruction, suggesting therapeutic targeting of 11beta-HSD1 may ameliorate processes that exacerbate type 1 diabetes and that hinder islet transplantation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Natural, unenriched Everglades wetlands are known to be limited by phosphorus (P) and responsive to P enrichment. However, whole-ecosystem evaluations of experimental P additions are rare in Everglades or other wetlands. We tested the response of the Everglades wetland ecosystem to continuous, low-level additions of P (0, 5, 15, and 30 μg L−1 above ambient) in replicate, 100 m flow-through flumes located in unenriched Everglades National Park. After the first six months of dosing, the concentration and standing stock of phosphorus increased in the surface water, periphyton, and flocculent detrital layer, but not in the soil or macrophytes. Of the ecosystem components measured, total P concentration increased the most in the floating periphyton mat (30 μg L−1: mean = 1916 μg P g−1, control: mean = 149 μg P g−1), while the flocculent detrital layer stored most of the accumulated P (30 μg L−1: mean = 1.732 g P m−2, control: mean = 0.769 g P m−2). Significant short-term responses of P concentration and standing stock were observed primarily in the high dose (30 μg L−1 above ambient) treatment. In addition, the biomass and estimated P standing stock of aquatic consumers increased in the 30 and 5 μg L−1 treatments. Alterations in P concentration and standing stock occurred only at the upstream ends of the flumes nearest to the point source of added nutrient. The total amount of P stored by the ecosystem within the flume increased with P dosing, although the ecosystem in the flumes retained only a small proportion of the P added over the first six months. These results indicate that oligotrophic Everglades wetlands respond rapidly to short-term, low-level P enrichment, and the initial response is most noticeable in the periphyton and flocculent detrital layer.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Natural, unenriched Evergladeswetlands are known to be limited by phosphorus(P) and responsive to P enrichment. However,whole-ecosystem evaluations of experimental Padditions are rare in Everglades or otherwetlands. We tested the response of theEverglades wetland ecosystem to continuous,low-level additions of P (0, 5, 15, and30 μg L−1 above ambient) in replicate,100 m flow-through flumes located in unenrichedEverglades National Park. After the first sixmonths of dosing, the concentration andstanding stock of phosphorus increased in thesurface water, periphyton, and flocculentdetrital layer, but not in the soil or macrophytes. Of the ecosystem components measured, total P concentration increased the most in the floating periphyton mat (30 μg L−1: mean = 1916 μg P g−1, control: mean =149 μg P g−1), while the flocculentdetrital layer stored most of the accumulated P(30 μg L−1: mean = 1.732 g P m−2,control: mean = 0.769 g P m−2). Significant short-term responsesof P concentration and standing stock wereobserved primarily in the high dose (30 μgL−1 above ambient) treatment. Inaddition, the biomass and estimated P standingstock of aquatic consumers increased in the 30and 5 μg L−1 treatments. Alterationsin P concentration and standing stock occurredonly at the upstream ends of the flumes nearestto the point source of added nutrient. Thetotal amount of P stored by the ecosystemwithin the flume increased with P dosing,although the ecosystem in the flumes retainedonly a small proportion of the P added over thefirst six months. These results indicate thatoligotrophic Everglades wetlands respondrapidly to short-term, low-level P enrichment,and the initial response is most noticeable inthe periphyton and flocculent detrital layer.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Objective: To assess the effects of selective cyclo-oxygenase-2 (COX 2) inhibitors and traditional non-steroidal anti-inflammatory drugs (NSAIDs) on the risk of vascular events. Design: Meta-analysis of published and unpublished tabular data from randomised trials, with indirect estimation of the effects of traditional NSAIDs. Data sources: Medline and Embase (January 1966 to April 2005); Food and Drug Administration records; and data on file from Novartis, Pfizer, and Merck. Review methods: Eligible studies were randomised trials that included a comparison of a selective COX 2 inhibitor versus placebo or a selective COX 2 inhibitor versus a traditional NSAID, of at least four weeks' duration, with information on serious vascular events (defined as myocardial infarction, stroke, or vascular death). Individual investigators and manufacturers provided information on the number of patients randomised, numbers of vascular events, and the person time of follow-up for each randomised group. Results: In placebo comparisons, allocation to a selective COX 2 inhibitor was associated with a 42% relative increase in the incidence of serious vascular events (1.2%/year v 0.9%/year; rate ratio 1.42, 95% confidence interval 1.13 to 1.78; P = 0.003), with no significant heterogeneity among the different selective COX 2 inhibitors. This was chiefly attributable to an increased risk of myocardial infarction (0.6%/year v 0.3%/year; 1.86, 1.33 to 2.59; P = 0.0003), with little apparent difference in other vascular outcomes. Among trials of at least one year's duration (mean 2.7 years), the rate ratio for vascular events was 1.45 (1.12 to 1.89; P = 0.005). Overall, the incidence of serious vascular events was similar between a selective COX 2 inhibitor and any traditional NSAID (1.0%/year v 0.9/%year; 1.16, 0.97 to 1.38; P = 0.1). However, statistical heterogeneity (P = 0.001) was found between trials of a selective COX 2 inhibitor versus naproxen (1.57, 1.21 to 2.03) and of a selective COX 2 inhibitor versus non-naproxen NSAIDs (0.88, 0.69 to 1.12). The summary rate ratio for vascular events, compared with placebo, was 0.92 (0.67 to 1.26) for naproxen, 1.51 (0.96 to 2.37) for ibuprofen, and 1.63 (1.12 to 2.37) for diclofenac. Conclusions: Selective COX 2 inhibitors are associated with a moderate increase in the risk of vascular events, as are high dose regimens of ibuprofen and diclofenac, but high dose naproxen is not associated with such an excess.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A tenet of modern radiotherapy (RT) is to identify the treatment target accurately, following which the high-dose treatment volume may be expanded into the surrounding tissues in order to create the clinical and planning target volumes. Respiratory motion can induce errors in target volume delineation and dose delivery in radiation therapy for thoracic and abdominal cancers. Historically, radiotherapy treatment planning in the thoracic and abdominal regions has used 2D or 3D images acquired under uncoached free-breathing conditions, irrespective of whether the target tumor is moving or not. Once the gross target volume has been delineated, standard margins are commonly added in order to account for motion. However, the generic margins do not usually take the target motion trajectory into consideration. That may lead to under- or over-estimate motion with subsequent risk of missing the target during treatment or irradiating excessive normal tissue. That introduces systematic errors into treatment planning and delivery. In clinical practice, four-dimensional (4D) imaging has been popular in For RT motion management. It provides temporal information about tumor and organ at risk motion, and it permits patient-specific treatment planning. The most common contemporary imaging technique for identifying tumor motion is 4D computed tomography (4D-CT). However, CT has poor soft tissue contrast and it induce ionizing radiation hazard. In the last decade, 4D magnetic resonance imaging (4D-MRI) has become an emerging tool to image respiratory motion, especially in the abdomen, because of the superior soft-tissue contrast. Recently, several 4D-MRI techniques have been proposed, including prospective and retrospective approaches. Nevertheless, 4D-MRI techniques are faced with several challenges: 1) suboptimal and inconsistent tumor contrast with large inter-patient variation; 2) relatively low temporal-spatial resolution; 3) it lacks a reliable respiratory surrogate. In this research work, novel 4D-MRI techniques applying MRI weightings that was not used in existing 4D-MRI techniques, including T2/T1-weighted, T2-weighted and Diffusion-weighted MRI were investigated. A result-driven phase retrospective sorting method was proposed, and it was applied to image space as well as k-space of MR imaging. Novel image-based respiratory surrogates were developed, improved and evaluated.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Purpose: There are two goals of this study. The first goal of this study is to investigate the feasibility of using classic textural feature extraction in radiotherapy response assessment among a unique cohort of early stage breast cancer patients who received the single-dose preoperative radiotherapy. The second goal of this study is to investigate the clinical feasibility of using classic texture features as potential biomarkers which are supplementary to regional apparent diffusion coefficient in gynecological cancer radiotherapy response assessment.

Methods and Materials: For the breast cancer study, 15 patients with early stage breast cancer were enrolled in this retrospective study. Each patient received a single-fraction radiation treatment, and DWI and DCE-MRI scans were conducted before and after the radiotherapy. DWI scans were acquired using a spin-echo EPI sequence with diffusion weighting factors of b = 0 and b = 500 mm2/s, and the apparent diffusion coefficient (ADC) maps were calculated. DCE-MRI scans were acquired using a T1-weighted 3D SPGR sequence with a temporal resolution of about 1 minute. The contrast agent (CA) was intravenously injected with a 0.1 mmol/kg bodyweight dose at 2 ml/s. Two parameters, volume transfer constant (Ktrans) and kep were analyzed using the two-compartment Tofts pharmacokinetic model. For pharmacokinetic parametric maps and ADC maps, 33 textural features were generated from the clinical target volume (CTV) in a 3D fashion using the classic gray level co-occurrence matrix (GLCOM) and gray level run length matrix (GLRLM). Wilcoxon signed-rank test was used to determine the significance of each texture feature’s change after the radiotherapy. The significance was set to 0.05 with Bonferroni correction.

For the gynecological cancer study, 12 female patients with gynecologic cancer treated with fractionated external beam radiotherapy (EBRT) combined with high dose rate (HDR) intracavitary brachytherapy were studied. Each patient first received EBRT treatment followed by five fractions of HDR treatment. Before EBRT and before each fraction of brachytherapy, Diffusion Weighted MRI (DWI-MRI) and CT scans were acquired. DWI scans were acquired in sagittal plane utilizing a spin-echo echo-planar imaging sequence with weighting factors of b = 500 s/mm2 and b = 1000 s/mm2, one set of images of b = 0 s/mm2 were also acquired. ADC maps were calculated using linear least-square fitting method. Distributed diffusion coefficient (DDC) maps and stretching parameter α were calculated. For ADC and DDC maps, 33 classic texture features were generated utilizing the classic gray level run length matrix (GLRLM) and gray level co-occurrence matrix (GLCOM) from high-risk clinical target volume (HR-CTV). Wilcoxon signed-rank statistics test was applied to determine the significance of each feature’s numerical value change after radiotherapy. Significance level was set to 0.05 with multi-comparison correction if applicable.

Results: For the breast cancer study, regarding ADC maps calculated from DWI-MRI, 24 out of 33 CTV features changed significantly after the radiotherapy. For DCE-MRI pharmacokinetic parameters, all 33 CTV features of Ktrans and 33 features of kep changed significantly.

For the gynecological cancer study, regarding ADC maps, 28 out of 33 HR-CTV texture features showed significant changes after the EBRT treatment. 28 out of 33 HR-CTV texture features indicated significant changes after HDR treatments. The texture features that indicated significant changes after HDR treatments are the same as those after EBRT treatment. 28 out of 33 HR-CTV texture features showed significant changes after whole radiotherapy treatment process. The texture features that indicated significant changes for the whole treatment process are the same as those after HDR treatments.

Conclusion: Initial results indicate that certain classic texture features are sensitive to radiation-induced changes. Classic texture features with significant numerical changes can be used in monitoring radiotherapy effect. This might suggest that certain texture features might be used as biomarkers which are supplementary to ADC and DDC for assessment of radiotherapy response in breast cancer and gynecological cancer.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Purpose: The purpose of this work is to investigate the radiosensitizing effect of gold nanoparticle (GNP) induced vasculature damage for proton, megavoltage (MV) photon, and kilovoltage (kV) photon irradiation. Methods: Monte Carlo simulations were carried out using tool for particle simulation (TOPAS) to obtain the spatial dose distribution in close proximity up to 20 µm from the GNPs. The spatial dose distribution from GNPs was used as an input to calculate the dose deposited to the blood vessels. GNP induced vasculature damage was evaluated for three particle sources (a clinical spread out Bragg peak proton beam, a 6 MV photon beam, and two kV photon beams). For each particle source, various depths in tissue, GNP sizes (2, 10, and 20 nm diameter), and vessel diameters (8, 14, and 20 µm) were investigated. Two GNP distributions in lumen were considered, either homogeneously distributed in the vessel or attached to the inner wall of the vessel. Doses of 30 Gy and 2 Gy were considered, representing typical in vivo enhancement studies and conventional clinical fractionation, respectively. Results: These simulations showed that for 20 Au-mg/g GNP blood concentration homogeneously distributed in the vessel, the additional dose at the inner vascular wall encircling the lumen was 43% of the prescribed dose at the depth of treatment for the 250 kVp photon source, 1% for the 6 MV photon source, and 0.1% for the proton beam. For kV photons, GNPs caused 15% more dose in the vascular wall for 150 kVp source than for 250 kVp. For 6 MV photons, GNPs caused 0.2% more dose in the vascular wall at 20 cm depth in water as compared to at depth of maximum dose (Dmax). For proton therapy, GNPs caused the same dose in the vascular wall for all depths across the spread out Bragg peak with 12.7 cm range and 7 cm modulation. For the same weight of GNPs in the vessel, 2 nm diameter GNPs caused three times more damage to the vessel than 20 nm diameter GNPs. When the GNPs were attached to the inner vascular wall, the damage to the inner vascular wall can be up to 207% of the prescribed dose for the 250 kVp photon source, 4% for the 6 MV photon source, and 2% for the proton beam. Even though the average dose increase from the proton beam and MV photon beam was not large, there were high dose spikes that elevate the local dose of the parts of the blood vessel to be higher than 15 Gy even for 2 Gy prescribed dose, especially when the GNPs can be actively targeted to the endothelial cells. Conclusions: GNPs can potentially be used to enhance radiation therapy by causing vasculature damage through high dose spikes caused by the addition of GNPs especially for hypofractionated treatment. If GNPs are designed to actively accumulate at the tumor vasculature walls, vasculature damage can be increased significantly. The largest enhancement is seen using kilovoltage photons due to the photoelectric effect. Although no significant average dose enhancement was observed for the whole vasculature structure for both MV photons and protons, they can cause high local dose escalation (>15 Gy) to areas of the blood vessel that can potentially contribute to the disruption of the functionality of the blood vessels in the tumor.