927 resultados para High Performance liquid chromatography coupled with mass spectrometry (LC-MS)
Resumo:
In the present study aimed to characterize and quantify four contaminants (ethyl carbamate, 2,3-butanedione, furfural and 5-hydroxymethylfurfural) present in alembic cachaça and industrial. Were collected forty-four samples of cachaça in the southern regions, the Midwest, southeast of Minas Gerais and São Paulo state, and subsequently subjected to physical, chemical and chromatographic analyzes. The physicochemical analyzes were performed according to the methodology described by the Ministry of Agriculture, Livestock and Supply (MAPA). The ethyl carbamate, 2,3-butanedione, furfuaral and 5 hydroxymethylfurfural were characterized and quantified by high-performance liquid chromatography (HPLC). The results of the ethyl carbamate analysis, it was found that both samples showed column cachaças outside the standards required by law, with the values 245.31 235.53 L-1 ug and none of the liquor samples alembic showed concentration greater than 210.0 ug L-1 , and the method is very sensitive to low limits of detection and quantification. In determining 2,3-butanedione, it was revealed that the column cachaças showed higher levels of contaminants when compared to cachaça alembic. In the quantification of furfural and 5-hydroxymethylfurfural was developed and validated analytical methods employed to high-performance liquid chromatography (HPLC) with DAD detector. Samples column cachaças showed higher values than the limit established by Brazilian legislation and ranged from 7.00 to 5.63 mg / 100 ml of anhydrous alcohol over the alembic cachaça.
Resumo:
The HPLC technique with UV-Vis detection was employed in the analysis of cocaine content in apprehended samples of cocaine and crack. A peak signal for cocaine was obtained in 3.5 minutes run by using acetonitrile/water (95:5v/v) as a mobile phase. Optimized spectrophotometric signal was obtained at a wavelength of 224 nm. The analytical curve from 1.0 to 40.0 ppm of cocaine was obtained, showing a linear correlation coefficient of 0.9989, with detection and quantification limits of 0.75 ppm and 3.78 ppm, respectively. This methodology was employed at the dosage of confiscated samples of cocaine and crack in the Scientific Police Laboratory of Ribeirão Preto-SP city.
Resumo:
Cachaça is a distiled beverage obtained from the fermentation of sugar cane syrup that, depending on the production procedures, may be susceptible to contamination by polycyclic aromatic hydrocarbons (PAHs). These compounds present carcinogenic and/or mutagenic properties and offer a risk to human health. Sixteen PAHs were determined in cachaças that had been stored in glass bottles and in polyethylene tank by gas chromatography coupled with mass spectrometry. The quantification of the PAHs utilised an internal standard. The limits of detection and quantification varied from 0.05 to 0.10 μg L−1 and 0.20 to 0.30 μg L−1, respectively. A total PAH concentration of 51.57 μg L−1 was found in the beverages that were stored in the tank, while the concentration in the cachaça stored in glass jugs was 6.07 μg L−1. These results indicate that the polyethylene tank is a source for PAHs in cachaça.
Resumo:
Pós-graduação em Química - IQ
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Química - IQ
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
A method for the simultaneous quantification of lycopene, beta-carotene, retinol and alpha-tocopherol by high-performance liquid chromatography (HPLC) with Vis/fluorescence detection with isocratic elution was optimized and validated. The method consists of a rapid and simple liquid-liquid extraction procedure and a posterior quantification of extracted supernatants by HPLC. Aliquots of plasma were stored at -20 degrees C for three months for stability study. The methodology was applied to samples from painters and individuals not exposed to paints (n = 75). The assay was linear for all vitamins (r > 0.99). Intra-and inter-run precisions were obtained with coefficient of variation smaller than 5%. The accuracies ranged from 0.29 to -5.80% and recoveries between 92.73 and 101.97%. Plasma samples and extracted supernatants were stable for 60 days at -20 degrees C. A significant decrease of lycopene, beta-carotene and retinol concentrations in plasma from exposed individuals compared to non-exposed individuals (p < 0.05) was observed. The method is simple, reproducible, precise, accurate and sensitive, and can be routinely utilized in clinical laboratories.
Resumo:
Background Geopropolis is a type of propolis containing resin, wax, and soil, collected by threatened stingless bee species native to tropical countries and used in folk medicine. However, studies concerning the biological activity and chemical composition of geopropolis are scarce. In this study, we evaluated the antimicrobial and antiproliferative activity of the ethanolic extract of geopropolis (EEGP) collected by Melipona scutellaris and its bioactive fraction against important clinical microorganisms as well as their in vitro cytotoxicity and chemical profile. Methods The antimicrobial activity of EEGP and fractions was examined by determining their minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) against six bacteria strains as well as their ability to inhibit Streptococcus mutans biofilm adherence. Total growth inhibition (TGI) was chosen to assay the antiproliferative activity of EEGP and its bioactive fraction against normal and cancer cell lines. The chemical composition of M. scutellaris geopropolis was identified by reversed-phase high-performance liquid chromatography and gas chromatography–mass spectrometry. Results EEGP significantly inhibited the growth of Staphylococcus aureus strains and S. mutans at low concentrations, and its hexane fraction (HF) presented the highest antibacterial activity. Also, both EEGP and HF inhibited S. mutans biofilm adherence (p < 0.05) and showed selectivity against human cancer cell lines, although only HF demonstrated selectivity at low concentrations. The chemical analyses performed suggest the absence of flavonoids and the presence of benzophenones as geopropolis major compounds. Conclusions The empirical use of this unique type of geopropolis by folk medicine practitioners was confirmed in the present study, since it showed antimicrobial and antiproliferative potential against the cancer cell lines studied. It is possible that the major compounds found in this type of geopropolis are responsible for its properties.
Resumo:
A method for the simultaneous quantification of lycopene, β-carotene, retinol and α-tocopherol by high-performance liquid chromatography (HPLC) with Vis/fluorescence detection with isocratic elution was optimized and validated. The method consists of a rapid and simple liquid-liquid extraction procedure and a posterior quantification of extracted supernatants by HPLC. Aliquots of plasma were stored at -20°C for three months for stability study. The methodology was applied to samples from painters and individuals not exposed to paints (n = 75). The assay was linear for all vitamins (r > 0.99). Intra- and inter-run precisions were obtained with coefficient of variation smaller than 5%. The accuracies ranged from 0.29 to -5.80% and recoveries between 92.73 and 101.97%. Plasma samples and extracted supernatants were stable for 60 days at -20°C. A significant decrease of lycopene, β-carotene and retinol concentrations in plasma from exposed individuals compared to non-exposed individuals (p < 0.05) was observed. The method is simple, reproducible, precise, accurate and sensitive, and can be routinely utilized in clinical laboratories.
Resumo:
In recent years, growing attention has been devoted to the use of lignocellulosic biomass as a feedstock to produce renewable carbohydrates as a source of energy products, including liquid alternatives to fossil fuels. The benefits of developing woody biomass to ethanol technology are to increase the long-term national energy security, reduce fossil energy consumption, lower greenhouse gas emissions, use renewable rather than depletable resources, and create local jobs. Currently, research is driven by the need to reduce the cost of biomass-ethanol production. One of the preferred methods is to thermochemically pretreat the biomass material and subsequently, enzymatically hydrolyze the pretreated material to fermentable sugars that can then be converted to ethanol using specialized microorganisms. The goals of pretreatment are to remove the hemicellulose fraction from other biomass components, reduce bioconversion time, enhance enzymatic conversion of the cellulose fraction, and, hopefully, obtain a higher ethanol yield. The primary goal of this research is to obtain kinetic detailed data for dilute acid hydrolysis for several timber species from the Upper Peninsula of Michigan and switchgrass. These results will be used to identify optimum reaction conditions to maximize production of fermentable sugars and minimize production of non-fermentable byproducts. The structural carbohydrate analysis of the biomass species used in this project was performed using the procedure proposed by National Renewable Energy Laboratory (NREL). Subsequently, dilute acid-catalyzed hydrolysis of biomass, including aspen, basswood, balsam, red maple, and switchgrass, was studied at various temperatures, acid concentrations, and particle sizes in a 1-L well-mixed batch reactor (Parr Instruments, ii Model 4571). 25 g of biomass and 500 mL of diluted acid solution were added into a 1-L glass liner, and then put into the reactor. During the experiment, 5 mL samples were taken starting at 100°C at 3 min intervals until reaching the targeted temperature (160, 175, or 190°C), followed by 4 samples after achieving the desired temperature. The collected samples were then cooled in an ice bath immediately to stop the reaction. The cooled samples were filtered using 0.2 μm MILLIPORE membrane filter to remove suspended solids. The filtered samples were then analyzed using High Performance Liquid Chromatography (HPLC) with a Bio-Rad Aminex HPX-87P column, and refractive index detection to measure monomeric and polymeric sugars plus degradation byproducts. A first order reaction model was assumed and the kinetic parameters such as activation energy and pre-exponential factor from Arrhenius equation were obtained from a match between the model and experimental data. The reaction temperature increases linearly after 40 minutes during experiments. Xylose and other sugars were formed from hemicellulose hydrolysis over this heat up period until a maximum concentration was reached at the time near when the targeted temperature was reached. However, negligible amount of xylose byproducts and small concentrations of other soluble sugars, such as mannose, arabinose, and galactose were detected during this initial heat up period. Very little cellulose hydrolysis yielding glucose was observed during the initial heat up period. On the other hand, later in the reaction during the constant temperature period xylose was degraded to furfural. Glucose production from cellulose was increased during this constant temperature period at later time points in the reaction. The kinetic coefficient governing the generation of xylose from hemicellulose and the generation of furfural from xylose presented a coherent dependence on both temperature and acid concentration. However, no effect was observed in the particle size. There were three types of biomass used in this project; hardwood (aspen, basswood, and red maple), softwood (balsam), and a herbaceous crop (switchgrass). The activation energies and the pre-exponential factors of the timber species and switchgrass were in a range of 49 - 180 kJ/mol and from 7.5x104 - 2.6x1020 min-1, respectively, for the xylose formation model. In addition, for xylose degradation, the activation energies and the preexponential factors ranged from 130 - 170 kJ/mol and from 6.8x1013 - 3.7x1017 min-1, respectively. The results compare favorably with the literature values given by Ranganathan et al, 1985. Overall, up to 92 % of the xylose was able to generate from the dilute acid hydrolysis in this project.
Resumo:
Purpose. The type and relative importance of saturated and unsaturated phospholipid components of surfactant within the epithelial lining fluid (ELF) of the inner and outer surfaces of the lung is not known. Methods. Seven healthy dogs were anesthetized and a bronchoalveolar lavage (BAL) was performed, immediately followed by a pleural lavage (PL). Lipid was extracted from lavage fluid and then analyzed for saturated, primarily dipalmitoylphosphatidylcholine (DPPC), and unsaturated phosphatidylcholine (PC) species using high-performance liquid chromatography (HPLC) with combined fluorescence and ultraviolet detection. Dilution of ELF in lavage fluids was corrected for using the urea method. Results. DPPC (494.7 +/- 213.9 mu g/mL) was the predominant PC present in ELF collected from the alveolar surface. In contrast, significantly higher (p = 0.028) proportions of unsaturated PC species were measured in PL fluid (similar to 105 mu g/mL), particularly stearoyl-linoleoyl-phosphatidylcholine (SLPC), which could not be measured in fluid collected from the alveoli, compared to DPPC (2.6 +/- 2.0 mu g/mL). Conclusions. This study indicates that unsaturated PC species seem to be more important than saturated species, particularly DPPC, in the pleural cavity, which has implications for surfactant replenishment following pleural disease or thoracic surgery.
Resumo:
Objective: The objective of the study was to characterise the population pharmacokinetic properties of itraconazole and its active metabolite hydroxyitraconazole in a representative paediatric population of cystic fibrosis and bone marrow transplant (BMT) patients and to identify patient characteristics influencing the pharmacokinetics of itraconazole. The ultimate goals were to determine the relative bioavailability between the two oral formulations (capsules vs oral solution) and to optimise dosing regimens in these patients. Methods: All paediatric patients with cystic fibrosis or patients undergoing BMT at The Royal Children's Hospital, Brisbane, QLD, Australia, who were prescribed oral itraconazole for the treatment of allergic bronchopulmonary aspergillosis (cystic fibrosis patients) or for prophylaxis of any fungal infection (BMT patients) were eligible for the study. Blood samples were taken from the recruited patients as per an empirical sampling design either during hospitalisation or during outpatient clinic visits. ltraconazole and hydroxy-itraconazole plasma concentrations were determined by a validated high-performance liquid chromatography assay with fluorometric detection. A nonlinear mixed-effect modelling approach using the NONMEM software to simultaneously describe the pharmacokinetics of itraconazole and its metabolite. Results: A one-compartment model with first-order absorption described the itraconazole data, and the metabolism of the parent drug to hydroxy-itraconazole was described by a first-order rate constant. The metabolite data also showed one-compartment characteristics with linear elimination. For itraconazole the apparent clearance (CLitraconazole) was 35.5 L/hour, the apparent volume of distribution (V-d(itraconazole)) was 672L, the absorption rate constant for the capsule formulation was 0.0901 h(-1) and for the oral solution formulation was 0.96 h-1. The lag time was estimated to be 19.1 minutes and the relative bioavailability between capsules and oral solution (F-rel) was 0.55. For the metabolite, volume of distribution, V-m/(F (.) f(m)), and clearance, CL/(F (.) fm), were 10.6L and 5.28 L/h, respectively. The influence of total bodyweight was significant, added as a covariate on CLitraconazoie/F and V-d(itraconazole)/F (standardised to a 70kg person) using allometric three-quarter power scaling on CLitraconazole/F, which therefore reflected adult values. The unexplained between-subject variability (coefficient of variation %) was 68.7%, 75.8%, 73.4% and 61.1% for CLitraconazoie/F, Vd(itraconazole)/F, CLm/(F (.) fm) and F-rel, respectively. The correlation between random effects of CLitraconazole and Vd((itraconazole)) was 0.69. Conclusion: The developed population pharmacokinetic model adequately described the pharmacokinetics of itraconazole and its active metabolite, hydroxy-itraconazole, in paediatric patients with either cystic fibrosis or undergoing BMT. More appropriate dosing schedules have been developed for the oral solution and the capsules to secure a minimum therapeutic trough plasma concentration of 0.5 mg/L for these patients.
Resumo:
Saturated phospholipids (PCs), particularly dipalmitoylphosphatidylcholine (DPPC), predominate in surfactant lining the alveoli, although little is known about the relationship between saturated and unsaturated PCs on the outer surface of the lung, the pleura. Seven healthy cats were anesthetized and a bronchoalveolar lavage (BAL) was performed, immediately followed by a pleural lavage (PL). Lipid was extracted from lavage fluid and then analyzed for saturated, primarily dipalmitoylphosphatidylcholine (DPPC), and unsaturated PC species using high-performance liquid chromatography (HPLC) with combined fluorescence and ultraviolet detection. Dilution of epithelial lining fluid (ELF) in lavage fluids was corrected for using the urea method. The concentration of DPPC in BAL fluid (85.3 +/- 15.7 mu g/mL) was significantly higher (P=0.021) than unsaturated PCs (similar to 40 mu g/mL). However, unsaturated PCs (similar to 34 mu g/mL), particularly stearoyl-linoleoyl-phosphatidylcholine (SLPC; 17.4 +/- 6.8), were significantly higher (P = 0.021) than DPPC (4.3 +/- 1.8 mu g/mL) in PL fluid. These results show that unsaturated PCs appear functionally more important in the pleural cavity, which may have implications for surfactant replenishment following pleural disease or thoracic surgery. (c) 2005 Published by Elsevier Ltd.