872 resultados para High Performance Computing
Resumo:
Opportunities offered by high performance computing provide a significant degree of promise in the enhancement of the performance of real-time flood forecasting systems. In this paper, a real-time framework for probabilistic flood forecasting through data assimilation is presented. The distributed rainfall-runoff real-time interactive basin simulator (RIBS) model is selected to simulate the hydrological process in the basin. Although the RIBS model is deterministic, it is run in a probabilistic way through the results of calibration developed in a previous work performed by the authors that identifies the probability distribution functions that best characterise the most relevant model parameters. Adaptive techniques improve the result of flood forecasts because the model can be adapted to observations in real time as new information is available. The new adaptive forecast model based on genetic programming as a data assimilation technique is compared with the previously developed flood forecast model based on the calibration results. Both models are probabilistic as they generate an ensemble of hydrographs, taking the different uncertainties inherent in any forecast process into account. The Manzanares River basin was selected as a case study, with the process being computationally intensive as it requires simulation of many replicas of the ensemble in real time.
Resumo:
The popularity of MapReduce programming model has increased interest in the research community for its improvement. Among the other directions, the point of fault tolerance, concretely the failure detection issue seems to be a crucial one, but that until now has not reached its satisfying level. Motivated by this, I decided to devote my main research during this period into having a prototype system architecture of MapReduce framework with a new failure detection service, containing both analytical (theoretical) and implementation part. I am confident that this work should lead the way for further contributions in detecting failures to any NoSQL App frameworks, and cloud storage systems in general.
Resumo:
This paper reports on an innovative approach that aims to reduce information management costs in data-intensive and cognitively-complex biomedical environments. Recognizing the importance of prominent high-performance computing paradigms and large data processing technologies as well as collaboration support systems to remedy data-intensive issues, it adopts a hybrid approach by building on the synergy of these technologies. The proposed approach provides innovative Web-based workbenches that integrate and orchestrate a set of interoperable services that reduce the data-intensiveness and complexity overload at critical decision points to a manageable level, thus permitting stakeholders to be more productive and concentrate on creative activities.
Resumo:
Abstract?We consider a mathematical model related to the stationary regime of a plasma of fusion nuclear, magnetically confined in a Stellarator device. Using the geometric properties of the fusion device, a suitable system of coordinates and averaging methods, the mathematical problem may be reduced to a two dimensional free boundary problem of nonlocal type, where the corresponding differential equation is of the Grad?Shafranov type. The current balance within each flux magnetic gives us the possibility to define the third covariant magnetic field component with respect to the averaged poloidal flux function. We present here some numerical experiences and we give some numerical approach for the averaged poloidal flux and for the third covariant magnetic field component.
Resumo:
A disruption predictor based on support vector machines (SVM) has been developed to be used in JET. The training process uses thousands of discharges and, therefore, high performance computing has been necessary to obtain the models. To this respect, several models have been generated with data from different JET campaigns. In addition, various kernels (mainly linear and RBF) and parameters have been tested. The main objective of this work has been the implementation of the predictor model under real-time constraints. A “C-code” software application has been developed to simulate the real-time behavior of the predictor. The application reads the signals from the JET database and simulates the real-time data processing, in particular, the specific data hold method to be developed when reading data from the JET ATM real time network. The simulator is fully configurable by means of text files to select models, signal thresholds, sampling rates, etc. Results with data between campaigns C23and C28 will be shown.
Resumo:
When non linear physical systems of infinite extent are modelled, such as tunnels and perforations, it is necessary to simulate suitably the solution in the infinite as well as the non linearity. The finite element method (FEM) is a well known procedure for simulating the non linear behavior. However, the treatment of the infinite field with domain truncations is often questionable. On the other hand, the boundary element method (BEM) is suitable to simulate the infinite behavior without truncations. Because of this, by the combination of both methods, suitable use of the advantages of each one may be obtained. Several possibilities of FEM-BEM coupling and their performance in some practical cases are discussed in this paper. Parallelizable coupling algorithms based on domain decomposition are developed and compared with the most traditional coupling methods.
Resumo:
Applications that operate on meshes are very popular in High Performance Computing (HPC) environments. In the past, many techniques have been developed in order to optimize the memory accesses for these datasets. Different loop transformations and domain decompositions are com- monly used for structured meshes. However, unstructured grids are more challenging. The memory accesses, based on the mesh connectivity, do not map well to the usual lin- ear memory model. This work presents a method to improve the memory performance which is suitable for HPC codes that operate on meshes. We develop a method to adjust the sequence in which the data are used inside the algorithm, by means of traversing and sorting the mesh. This sorted mesh can be transferred sequentially to the lower memory levels and allows for minimum data transfer requirements. The method also reduces the lower memory requirements dra- matically: up to 63% of the L1 cache misses are removed in a traditional cache system. We have obtained speedups of up to 2.58 on memory operations as measured in a general- purpose CPU. An improvement is also observed with se- quential access memories, where we have observed reduc- tions of up to 99% in the required low-level memory size.
Resumo:
The use of data mining techniques for the gene profile discovery of diseases, such as cancer, is becoming usual in many researches. These techniques do not usually analyze the relationships between genes in depth, depending on the different variety of manifestations of the disease (related to patients). This kind of analysis takes a considerable amount of time and is not always the focus of the research. However, it is crucial in order to generate personalized treatments to fight the disease. Thus, this research focuses on finding a mechanism for gene profile analysis to be used by the medical and biologist experts. Results: In this research, the MedVir framework is proposed. It is an intuitive mechanism based on the visualization of medical data such as gene profiles, patients, clinical data, etc. MedVir, which is based on an Evolutionary Optimization technique, is a Dimensionality Reduction (DR) approach that presents the data in a three dimensional space. Furthermore, thanks to Virtual Reality technology, MedVir allows the expert to interact with the data in order to tailor it to the experience and knowledge of the expert.
Resumo:
High-Performance Computing, Cloud computing and next-generation applications such e-Health or Smart Cities have dramatically increased the computational demand of Data Centers. The huge energy consumption, increasing levels of CO2 and the economic costs of these facilities represent a challenge for industry and researchers alike. Recent research trends propose the usage of holistic optimization techniques to jointly minimize Data Center computational and cooling costs from a multilevel perspective. This paper presents an analysis on the parameters needed to integrate the Data Center in a holistic optimization framework and leverages the usage of Cyber-Physical systems to gather workload, server and environmental data via software techniques and by deploying a non-intrusive Wireless Sensor Net- work (WSN). This solution tackles data sampling, retrieval and storage from a reconfigurable perspective, reducing the amount of data generated for optimization by a 68% without information loss, doubling the lifetime of the WSN nodes and allowing runtime energy minimization techniques in a real scenario.
Resumo:
LLas nuevas tecnologías orientadas a la nube, el internet de las cosas o las tendencias "as a service" se basan en el almacenamiento y procesamiento de datos en servidores remotos. Para garantizar la seguridad en la comunicación de dichos datos al servidor remoto, y en el manejo de los mismos en dicho servidor, se hace uso de diferentes esquemas criptográficos. Tradicionalmente, dichos sistemas criptográficos se centran en encriptar los datos mientras no sea necesario procesarlos (es decir, durante la comunicación y almacenamiento de los mismos). Sin embargo, una vez es necesario procesar dichos datos encriptados (en el servidor remoto), es necesario desencriptarlos, momento en el cual un intruso en dicho servidor podría a acceder a datos sensibles de usuarios del mismo. Es más, este enfoque tradicional necesita que el servidor sea capaz de desencriptar dichos datos, teniendo que confiar en la integridad de dicho servidor de no comprometer los datos. Como posible solución a estos problemas, surgen los esquemas de encriptación homomórficos completos. Un esquema homomórfico completo no requiere desencriptar los datos para operar con ellos, sino que es capaz de realizar las operaciones sobre los datos encriptados, manteniendo un homomorfismo entre el mensaje cifrado y el mensaje plano. De esta manera, cualquier intruso en el sistema no podría robar más que textos cifrados, siendo imposible un robo de los datos sensibles sin un robo de las claves de cifrado. Sin embargo, los esquemas de encriptación homomórfica son, actualmente, drás-ticamente lentos comparados con otros esquemas de encriptación clásicos. Una op¬eración en el anillo del texto plano puede conllevar numerosas operaciones en el anillo del texto encriptado. Por esta razón, están surgiendo distintos planteamientos sobre como acelerar estos esquemas para un uso práctico. Una de las propuestas para acelerar los esquemas homomórficos consiste en el uso de High-Performance Computing (HPC) usando FPGAs (Field Programmable Gate Arrays). Una FPGA es un dispositivo semiconductor que contiene bloques de lógica cuya interconexión y funcionalidad puede ser reprogramada. Al compilar para FPGAs, se genera un circuito hardware específico para el algorithmo proporcionado, en lugar de hacer uso de instrucciones en una máquina universal, lo que supone una gran ventaja con respecto a CPUs. Las FPGAs tienen, por tanto, claras difrencias con respecto a CPUs: -Arquitectura en pipeline: permite la obtención de outputs sucesivos en tiempo constante -Posibilidad de tener multiples pipes para computación concurrente/paralela. Así, en este proyecto: -Se realizan diferentes implementaciones de esquemas homomórficos en sistemas basados en FPGAs. -Se analizan y estudian las ventajas y desventajas de los esquemas criptográficos en sistemas basados en FPGAs, comparando con proyectos relacionados. -Se comparan las implementaciones con trabajos relacionados New cloud-based technologies, the internet of things or "as a service" trends are based in data storage and processing in a remote server. In order to guarantee a secure communication and handling of data, cryptographic schemes are used. Tradi¬tionally, these cryptographic schemes focus on guaranteeing the security of data while storing and transferring it, not while operating with it. Therefore, once the server has to operate with that encrypted data, it first decrypts it, exposing unencrypted data to intruders in the server. Moreover, the whole traditional scheme is based on the assumption the server is reliable, giving it enough credentials to decipher data to process it. As a possible solution for this issues, fully homomorphic encryption(FHE) schemes is introduced. A fully homomorphic scheme does not require data decryption to operate, but rather operates over the cyphertext ring, keeping an homomorphism between the cyphertext ring and the plaintext ring. As a result, an outsider could only obtain encrypted data, making it impossible to retrieve the actual sensitive data without its associated cypher keys. However, using homomorphic encryption(HE) schemes impacts performance dras-tically, slowing it down. One operation in the plaintext space can lead to several operations in the cyphertext space. Because of this, different approaches address the problem of speeding up these schemes in order to become practical. One of these approaches consists in the use of High-Performance Computing (HPC) using FPGAs (Field Programmable Gate Array). An FPGA is an integrated circuit designed to be configured by a customer or a designer after manufacturing - hence "field-programmable". Compiling into FPGA means generating a circuit (hardware) specific for that algorithm, instead of having an universal machine and generating a set of machine instructions. FPGAs have, thus, clear differences compared to CPUs: - Pipeline architecture, which allows obtaining successive outputs in constant time. -Possibility of having multiple pipes for concurrent/parallel computation. Thereby, In this project: -We present different implementations of FHE schemes in FPGA-based systems. -We analyse and study advantages and drawbacks of the implemented FHE schemes, compared to related work.
Resumo:
This paper focuses on the parallelization of an ocean model applying current multicore processor-based cluster architectures to an irregular computational mesh. The aim is to maximize the efficiency of the computational resources used. To make the best use of the resources offered by these architectures, this parallelization has been addressed at all the hardware levels of modern supercomputers: firstly, exploiting the internal parallelism of the CPU through vectorization; secondly, taking advantage of the multiple cores of each node using OpenMP; and finally, using the cluster nodes to distribute the computational mesh, using MPI for communication within the nodes. The speedup obtained with each parallelization technique as well as the combined overall speedup have been measured for the western Mediterranean Sea for different cluster configurations, achieving a speedup factor of 73.3 using 256 processors. The results also show the efficiency achieved in the different cluster nodes and the advantages obtained by combining OpenMP and MPI versus using only OpenMP or MPI. Finally, the scalability of the model has been analysed by examining computation and communication times as well as the communication and synchronization overhead due to parallelization.
Resumo:
We are indebted with Marnix Medema, Paul Straight and Sean Rovito, for useful discussions and critical reading of the manuscript, as well as with Alicia Chagolla and Yolanda Rodriguez of the MS Service of Unidad Irapuato, Cinvestav, and Araceli Fernandez for technical support in high-performance computing. This work was funded by Conacyt Mexico (grants No. 179290 and 177568) and FINNOVA Mexico (grant No. 214716) to FBG. PCM was funded by Conacyt scholarship (No. 28830) and a Cinvestav posdoctoral fellowship. JF and JFK acknowledge funding from the College of Physical Sciences, University of Aberdeen, UK.
Resumo:
A ciência tem feito uso frequente de recursos computacionais para execução de experimentos e processos científicos, que podem ser modelados como workflows que manipulam grandes volumes de dados e executam ações como seleção, análise e visualização desses dados segundo um procedimento determinado. Workflows científicos têm sido usados por cientistas de várias áreas, como astronomia e bioinformática, e tendem a ser computacionalmente intensivos e fortemente voltados à manipulação de grandes volumes de dados, o que requer o uso de plataformas de execução de alto desempenho como grades ou nuvens de computadores. Para execução dos workflows nesse tipo de plataforma é necessário o mapeamento dos recursos computacionais disponíveis para as atividades do workflow, processo conhecido como escalonamento. Plataformas de computação em nuvem têm se mostrado um alternativa viável para a execução de workflows científicos, mas o escalonamento nesse tipo de plataforma geralmente deve considerar restrições específicas como orçamento limitado ou o tipo de recurso computacional a ser utilizado na execução. Nesse contexto, informações como a duração estimada da execução ou limites de tempo e de custo (chamadas aqui de informações de suporte ao escalonamento) são importantes para garantir que o escalonamento seja eficiente e a execução ocorra de forma a atingir os resultados esperados. Este trabalho identifica as informações de suporte que podem ser adicionadas aos modelos de workflows científicos para amparar o escalonamento e a execução eficiente em plataformas de computação em nuvem. É proposta uma classificação dessas informações, e seu uso nos principais Sistemas Gerenciadores de Workflows Científicos (SGWC) é analisado. Para avaliar o impacto do uso das informações no escalonamento foram realizados experimentos utilizando modelos de workflows científicos com diferentes informações de suporte, escalonados com algoritmos que foram adaptados para considerar as informações inseridas. Nos experimentos realizados, observou-se uma redução no custo financeiro de execução do workflow em nuvem de até 59% e redução no makespan chegando a 8,6% se comparados à execução dos mesmos workflows sendo escalonados sem nenhuma informação de suporte disponível.
Resumo:
Devido às tendências de crescimento da quantidade de dados processados e a crescente necessidade por computação de alto desempenho, mudanças significativas estão acontecendo no projeto de arquiteturas de computadores. Com isso, tem-se migrado do paradigma sequencial para o paralelo, com centenas ou milhares de núcleos de processamento em um mesmo chip. Dentro desse contexto, o gerenciamento de energia torna-se cada vez mais importante, principalmente em sistemas embarcados, que geralmente são alimentados por baterias. De acordo com a Lei de Moore, o desempenho de um processador dobra a cada 18 meses, porém a capacidade das baterias dobra somente a cada 10 anos. Esta situação provoca uma enorme lacuna, que pode ser amenizada com a utilização de arquiteturas multi-cores heterogêneas. Um desafio fundamental que permanece em aberto para estas arquiteturas é realizar a integração entre desenvolvimento de código embarcado, escalonamento e hardware para gerenciamento de energia. O objetivo geral deste trabalho de doutorado é investigar técnicas para otimização da relação desempenho/consumo de energia em arquiteturas multi-cores heterogêneas single-ISA implementadas em FPGA. Nesse sentido, buscou-se por soluções que obtivessem o melhor desempenho possível a um consumo de energia ótimo. Isto foi feito por meio da combinação de mineração de dados para a análise de softwares baseados em threads aliadas às técnicas tradicionais para gerenciamento de energia, como way-shutdown dinâmico, e uma nova política de escalonamento heterogeneity-aware. Como principais contribuições pode-se citar a combinação de técnicas de gerenciamento de energia em diversos níveis como o nível do hardware, do escalonamento e da compilação; e uma política de escalonamento integrada com uma arquitetura multi-core heterogênea em relação ao tamanho da memória cache L1.
Resumo:
A computação paralela permite uma série de vantagens para a execução de aplicações de grande porte, sendo que o uso efetivo dos recursos computacionais paralelos é um aspecto relevante da computação de alto desempenho. Este trabalho apresenta uma metodologia que provê a execução, de forma automatizada, de aplicações paralelas baseadas no modelo BSP com tarefas heterogêneas. É considerado no modelo adotado, que o tempo de computação de cada tarefa secundária não possui uma alta variância entre uma iteração e outra. A metodologia é denominada de ASE e é composta por três etapas: Aquisição (Acquisition), Escalonamento (Scheduling) e Execução (Execution). Na etapa de Aquisição, os tempos de processamento das tarefas são obtidos; na etapa de Escalonamento a metodologia busca encontrar a distribuição de tarefas que maximize a velocidade de execução da aplicação paralela, mas minimizando o uso de recursos, por meio de um algoritmo desenvolvido neste trabalho; e por fim a etapa de Execução executa a aplicação paralela com a distribuição definida na etapa anterior. Ferramentas que são aplicadas na metodologia foram implementadas. Um conjunto de testes aplicando a metodologia foi realizado e os resultados apresentados mostram que os objetivos da proposta foram alcançados.