881 resultados para Heuristic-driven biases
Resumo:
A statistical model is derived relating the diurnal variation of sea surface temperature (SST) to the net surface heat flux and surface wind speed from a numerical weather prediction (NWP) model. The model is derived using fluxes and winds from the European Centre for Medium-Range Weather Forecasting (ECMWF) NWP model and SSTs from the Spinning Enhanced Visible and Infrared Imager (SEVIRI). In the model, diurnal warming has a linear dependence on the net surface heat flux integrated since (approximately) dawn and an inverse quadratic dependence on the maximum of the surface wind speed in the same period. The model coefficients are found by matching, for a given integrated heat flux, the frequency distributions of the maximum wind speed and the observed warming. Diurnal cooling, where it occurs, is modelled as proportional to the integrated heat flux divided by the heat capacity of the seasonal mixed layer. The model reproduces the statistics (mean, standard deviation, and 95-percentile) of the diurnal variation of SST seen by SEVIRI and reproduces the geographical pattern of mean warming seen by the Advanced Microwave Scanning Radiometer (AMSR-E). We use the functional dependencies in the statistical model to test the behaviour of two physical model of diurnal warming that display contrasting systematic errors.
Resumo:
Explanatory theorists increasingly insist that their theories are useful even though they cannot be deductively applied. But if so, then how do such theories contribute to our understanding of international relations? I argue that explanatory theories are typically heuristically applied: theorists’ accounts of specific empirical episodes are shaped by their theories’ thematic content, but are not inferred from putative causal generalizations or covering laws. These accounts therefore gain no weight from their purely rhetorical association with theories’ quasi-deductive arguments: they must be judged on the plausibility of their empirical claims. Moreover, the quasi-deductive form in which explanatory theories are typically presented obscures their actual explanatory role, which is to indicate what sort of explanation may be required, to provide conceptual categories, and to suggest an empirical focus. This account of how theoretical explanations are constructed subverts the nomothetic–idiographic distinction that is often used to distinguish International Relations from History.
Resumo:
The complexity of current and emerging high performance architectures provides users with options about how best to use the available resources, but makes predicting performance challenging. In this work a benchmark-driven performance modelling approach is outlined that is appro- priate for modern multicore architectures. The approach is demonstrated by constructing a model of a simple shallow water code on a Cray XE6 system, from application-specific benchmarks that illustrate precisely how architectural char- acteristics impact performance. The model is found to recre- ate observed scaling behaviour up to 16K cores, and used to predict optimal rank-core affinity strategies, exemplifying the type of problem such a model can be used for.
Resumo:
Future climate change projections are often derived from ensembles of simulations from multiple global circulation models using heuristic weighting schemes. This study provides a more rigorous justification for this by introducing a nested family of three simple analysis of variance frameworks. Statistical frameworks are essential in order to quantify the uncertainty associated with the estimate of the mean climate change response. The most general framework yields the “one model, one vote” weighting scheme often used in climate projection. However, a simpler additive framework is found to be preferable when the climate change response is not strongly model dependent. In such situations, the weighted multimodel mean may be interpreted as an estimate of the actual climate response, even in the presence of shared model biases. Statistical significance tests are derived to choose the most appropriate framework for specific multimodel ensemble data. The framework assumptions are explicit and can be checked using simple tests and graphical techniques. The frameworks can be used to test for evidence of nonzero climate response and to construct confidence intervals for the size of the response. The methodology is illustrated by application to North Atlantic storm track data from the Coupled Model Intercomparison Project phase 5 (CMIP5) multimodel ensemble. Despite large variations in the historical storm tracks, the cyclone frequency climate change response is not found to be model dependent over most of the region. This gives high confidence in the response estimates. Statistically significant decreases in cyclone frequency are found on the flanks of the North Atlantic storm track and in the Mediterranean basin.
Resumo:
The exchange between the open ocean and sub-ice shelf cavities is important to both water mass transformations and ice shelf melting. Here we use a high-resolution (500 m) numerical model to investigate to which degree eddies produced by frontal instability at the edge of a polynya are capable of transporting dense High Salinity Shelf Water (HSSW) underneath an ice shelf. The applied surface buoyancy flux and ice shelf geometry is based on Ronne Ice Shelf in the southern Weddell Sea, an area of intense wintertime sea ice production where a flow of HSSW into the cavity has been observed. Results show that eddies are able to enter the cavity at the southwestern corner of the polynya where an anticyclonic rim current intersects the ice shelf front. The size and time scale of simulated eddies are in agreement with observations close to the Ronne Ice Front. The properties and strength of the inflow are sensitive to the prescribed total ice production, flushing the ice shelf cavity at a rate of 0.2–0.4 × 106 m3 s−1 depending on polynya size and magnitude of surface buoyancy flux. Eddy-driven HSSW transport into the cavity is reduced by about 50% if the model grid resolution is decreased to 2-5 km and eddies are not properly resolved.
Resumo:
Descent and spreading of high salinity water generated by salt rejection during sea ice formation in an Antarctic coastal polynya is studied using a hydrostatic, primitive equation three-dimensional ocean model called the Proudman Oceanographic Laboratory Coastal Ocean Modeling System (POLCOMS). The shape of the polynya is assumed to be a rectangle 100 km long and 30 km wide, and the salinity flux into the polynya at its surface is constant. The model has been run at high horizontal spatial resolution (500 m), and numerical simulations reveal a buoyancy-driven coastal current. The coastal current is a robust feature and appears in a range of simulations designed to investigate the influence of a sloping bottom, variable bottom drag, variable vertical turbulent diffusivities, higher salinity flux, and an offshore position of the polynya. It is shown that bottom drag is the main factor determining the current width. This coastal current has not been produced with other numerical models of polynyas, which may be because these models were run at coarser resolutions. The coastal current becomes unstable upstream of its front when the polynya is adjacent to the coast. When the polynya is situated offshore, an unstable current is produced from its outset owing to the capture of cyclonic eddies. The effect of a coastal protrusion and a canyon on the current motion is investigated. In particular, due to the convex shape of the coastal protrusion, the current sheds a dipolar eddy.
Resumo:
The relationship between biases in Northern Hemisphere (NH) atmospheric blocking frequency and extratropical cyclone track density is investigated in 12 CMIP5 climate models to identify mechanisms underlying climate model biases and inform future model development. Biases in the Greenland blocking and summer Pacific blocking frequencies are associated with biases in the storm track latitudes while biases in winter European blocking frequency are related to the North Atlantic storm track tilt and Mediterranean cyclone density. However, biases in summer European and winter Pacific blocking appear less related with cyclone track density. Furthermore, the models with smaller biases in winter European blocking frequency have smaller biases in the cyclone density in Europe, which suggests that they are different aspects of the same bias. This is not found elsewhere in the NH. The summer North Atlantic and the North Pacific mean CMIP5 track density and blocking biases might therefore have different origins.
Resumo:
We present an efficient method of combining wide angle neutron scattering data with detailed atomistic models, allowing us to perform a quantitative and qualitative mapping of the organisation of the chain conformation in both glass and liquid phases. The structural refinement method presented in this work is based on the exploitation of the intrachain features of the diffraction pattern and its intimate linkage with atomistic models by the use of internal coordinates for bond lengths, valence angles and torsion rotations. Atomic connectivity is defined through these coordinates that are in turn assigned by pre-defined probability distributions, thus allowing for the models in question to be built stochastically. Incremental variation of these coordinates allows for the construction of models that minimise the differences between the observed and calculated structure factors. We present a series of neutron scattering data of 1,2 polybutadiene at the region 120-400K. Analysis of the experimental data yield bond lengths for C-C and C=C of 1.54Å and 1.35Å respectively. Valence angles of the backbone were found to be at 112° and the torsion distributions are characterised by five rotational states, a three-fold trans-skew± for the backbone and gauche± for the vinyl group. Rotational states of the vinyl group were found to be equally populated, indicating a largely atactic chan. The two backbone torsion angles exhibit different behaviour with respect to temperature of their trans population, with one of them adopting an almost all trans sequence. Consequently the resulting configuration leads to a rather persistent chain, something indicated by the value of the characteristic ratio extrapolated from the model. We compare our results with theoretical predictions, computer simulations, RIS models and previously reported experimental results.
Resumo:
We demonstrate that summer precipitation biases in the South Asian monsoon domain are sensitive to increasing the convective parametrisation’s entrainment and detrainment rates in the Met Office Unified Model. We explore this sensitivity to improve our understanding of the biases and inform efforts to improve convective parametrisation. We perform novel targeted experiments in which we increase the entrainment and detrainment rates in regions of especially large precipitation bias. We use these experiments to determine whether the sensitivity at a given location is a consequence of the local change to convection or is a remote response to the change elsewhere. We find that a local change leads to different mean-state responses in comparable regions. When the entrainment and detrainment rates are increased globally, feedbacks between regions usually strengthen the local responses. We choose two regions of tropical ascent that show different mean-state responses, the western equatorial Indian Ocean and western north Pacific, and analyse them as case studies to determine the mechanisms leading to the different responses. Our results indicate that several aspects of a region’s mean-state, including moisture content, sea surface temperature and circulation, play a role in local feedbacks that determine the response to increased entrainment and detrainment.
Resumo:
Understanding how climate change can affect crop-pollinator systems helps predict potential geographical mismatches between a crop and its pollinators, and therefore identify areas vulnerable to loss of pollination services. We examined the distribution of orchard species (apples, pears, plums and other top fruits) and their pollinators in Great Britain, for present and future climatic conditions projected for 2050 under the SRES A1B Emissions Scenario. We used a relative index of pollinator availability as a proxy for pollination service. At present there is a large spatial overlap between orchards and their pollinators, but predictions for 2050 revealed that the most suitable areas for orchards corresponded to low pollinator availability. However, we found that pollinator availability may persist in areas currently used for fruit production, but which are predicted to provide sub-optimal environmental suitability for orchard species in the future. Our results may be used to identify mitigation options to safeguard orchard production against the risk of pollination failure in Great Britain over the next 50 years; for instance choosing fruit tree varieties that are adapted to future climatic conditions, or boosting wild pollinators through improving landscape resources. Our approach can be readily applied to other regions and crop systems, and expanded to include different climatic scenarios.
Resumo:
Decadal climate predictions exhibit large biases, which are often subtracted and forgotten. However, understanding the causes of bias is essential to guide efforts to improve prediction systems, and may offer additional benefits. Here the origins of biases in decadal predictions are investigated, including whether analysis of these biases might provide useful information. The focus is especially on the lead-time-dependent bias tendency. A “toy” model of a prediction system is initially developed and used to show that there are several distinct contributions to bias tendency. Contributions from sampling of internal variability and a start-time-dependent forcing bias can be estimated and removed to obtain a much improved estimate of the true bias tendency, which can provide information about errors in the underlying model and/or errors in the specification of forcings. It is argued that the true bias tendency, not the total bias tendency, should be used to adjust decadal forecasts. The methods developed are applied to decadal hindcasts of global mean temperature made using the Hadley Centre Coupled Model, version 3 (HadCM3), climate model, and it is found that this model exhibits a small positive bias tendency in the ensemble mean. When considering different model versions, it is shown that the true bias tendency is very highly correlated with both the transient climate response (TCR) and non–greenhouse gas forcing trends, and can therefore be used to obtain observationally constrained estimates of these relevant physical quantities.
Resumo:
The current state of the art in the planning and coordination of autonomous vehicles is based upon the presence of speed lanes. In a traffic scenario where there is a large diversity between vehicles the removal of speed lanes can generate a significantly higher traffic bandwidth. Vehicle navigation in such unorganized traffic is considered. An evolutionary based trajectory planning technique has the advantages of making driving efficient and safe, however it also has to surpass the hurdle of computational cost. In this paper, we propose a real time genetic algorithm with Bezier curves for trajectory planning. The main contribution is the integration of vehicle following and overtaking behaviour for general traffic as heuristics for the coordination between vehicles. The resultant coordination strategy is fast and near-optimal. As the vehicles move, uncertainties may arise which are constantly adapted to, and may even lead to either the cancellation of an overtaking procedure or the initiation of one. Higher level planning is performed by Dijkstra's algorithm which indicates the route to be followed by the vehicle in a road network. Re-planning is carried out when a road blockage or obstacle is detected. Experimental results confirm the success of the algorithm subject to optimal high and low-level planning, re-planning and overtaking.
Resumo:
Seamless phase II/III clinical trials are conducted in two stages with treatment selection at the first stage. In the first stage, patients are randomized to a control or one of k > 1 experimental treatments. At the end of this stage, interim data are analysed, and a decision is made concerning which experimental treatment should continue to the second stage. If the primary endpoint is observable only after some period of follow-up, at the interim analysis data may be available on some early outcome on a larger number of patients than those for whom the primary endpoint is available. These early endpoint data can thus be used for treatment selection. For two previously proposed approaches, the power has been shown to be greater for one or other method depending on the true treatment effects and correlations. We propose a new approach that builds on the previously proposed approaches and uses data available at the interim analysis to estimate these parameters and then, on the basis of these estimates, chooses the treatment selection method with the highest probability of correctly selecting the most effective treatment. This method is shown to perform well compared with the two previously described methods for a wide range of true parameter values. In most cases, the performance of the new method is either similar to or, in some cases, better than either of the two previously proposed methods.
Resumo:
We discussed a floating mechanism based on quasi-magnetic levitation method that can be attached at the endpoint of a robot arm in order to construct a novel redundant robot arm for producing compliant motions. The floating mechanism can be composed of magnets and a constraint mechanism such that the repelling force of the magnets floats the endpoint part of the mechanism stable for the guided motions. The analytical and experimental results show that the proposed floating mechanism can produce stable floating motions with small inertia and viscosity. The results also show that the proposed mechanism can detect small force applied to the endpoint part because the friction force of the mechanism is very small.