936 resultados para Heterogeneous Nucleation
Resumo:
This paper presents a GA-based optimization procedure for bioinspired heterogeneous modular multiconfigurable chained microrobots. When constructing heterogeneous chained modular robots that are composed of several different drive modules, one must select the type and position of the modules that form the chain. One must also develop new locomotion gaits that combine the different drive modules. These are two new features of heterogeneous modular robots that they do not share with homogeneous modular robots. This paper presents an offline control system that allows the development of new configuration schemes and locomotion gaits for these heterogeneous modular multiconfigurable chained microrobots. The offline control system is based on a simulator that is specifically designed for chained modular robots and allows them to develop and learn new locomotion patterns.
Resumo:
In a large number of physical, biological and environmental processes interfaces with high irregular geometry appear separating media (phases) in which the heterogeneity of constituents is present. In this work the quantification of the interplay between irregular structures and surrounding heterogeneous distributions in the plane is made For a geometric set image and a mass distribution (measure) image supported in image, being image, the mass image gives account of the interplay between the geometric structure and the surrounding distribution. A computation method is developed for the estimation and corresponding scaling analysis of image, being image a fractal plane set of Minkowski dimension image and image a multifractal measure produced by random multiplicative cascades. The method is applied to natural and mathematical fractal structures in order to study the influence of both, the irregularity of the geometric structure and the heterogeneity of the distribution, in the scaling of image. Applications to the analysis and modeling of interplay of phases in environmental scenarios are given.
Resumo:
This paper presents a new simulation environment aimed at heterogeneous chained modular robots. This simulator allows testing the feasibility of the design, checking how modules are going to perform in the field and verifying hardware, electronics and communication designs before the prototype is built, saving time and resources. The paper shows how the simulator is built and how it can be set up to adapt to new designs. It also gives some examples of its use showing different heterogeneous modular robots running in different environments.
Resumo:
Secure access to patient data is becoming of increasing importance, as medical informatics grows in significance, to both assist with population health studies, and patient specific medicine in support of treatment. However, assembling the many different types of data emanating from the clinic is in itself a difficulty, and doing so across national borders compounds the problem. In this paper we present our solution: an easy to use distributed informatics platform embedding a state of the art data warehouse incorporating a secure pseudonymisation system protecting access to personal healthcare data. Using this system, a whole range of patient derived data, from genomics to imaging to clinical records, can be assembled and linked, and then connected with analytics tools that help us to understand the data. Research performed in this environment will have immediate clinical impact for personalised patient healthcare.
Resumo:
Con el auge del Cloud Computing, las aplicaciones de proceso de datos han sufrido un incremento de demanda, y por ello ha cobrado importancia lograr m�ás eficiencia en los Centros de Proceso de datos. El objetivo de este trabajo es la obtenci�ón de herramientas que permitan analizar la viabilidad y rentabilidad de diseñar Centros de Datos especializados para procesamiento de datos, con una arquitectura, sistemas de refrigeraci�ón, etc. adaptados. Algunas aplicaciones de procesamiento de datos se benefician de las arquitecturas software, mientras que en otras puede ser m�ás eficiente un procesamiento con arquitectura hardware. Debido a que ya hay software con muy buenos resultados en el procesamiento de grafos, como el sistema XPregel, en este proyecto se realizará una arquitectura hardware en VHDL, implementando el algoritmo PageRank de Google de forma escalable. Se ha escogido este algoritmo ya que podr��á ser m�ás eficiente en arquitectura hardware, debido a sus características concretas que se indicaráan m�ás adelante. PageRank sirve para ordenar las p�áginas por su relevancia en la web, utilizando para ello la teorí��a de grafos, siendo cada página web un vértice de un grafo; y los enlaces entre páginas, las aristas del citado grafo. En este proyecto, primero se realizará un an�álisis del estado de la técnica. Se supone que la implementaci�ón en XPregel, un sistema de procesamiento de grafos, es una de las m�ás eficientes. Por ello se estudiará esta �ultima implementaci�ón. Sin embargo, debido a que Xpregel procesa, en general, algoritmos que trabajan con grafos; no tiene en cuenta ciertas caracterí��sticas del algoritmo PageRank, por lo que la implementaci�on no es �optima. Esto es debido a que en PageRank, almacenar todos los datos que manda un mismo v�értice es un gasto innecesario de memoria ya que todos los mensajes que manda un vértice son iguales entre sí e iguales a su PageRank. Se realizará el diseño en VHDL teniendo en cuenta esta caracter��ística del citado algoritmo,evitando almacenar varias veces los mensajes que son iguales. Se ha elegido implementar PageRank en VHDL porque actualmente las arquitecturas de los sistemas operativos no escalan adecuadamente. Se busca evaluar si con otra arquitectura se obtienen mejores resultados. Se realizará un diseño partiendo de cero, utilizando la memoria ROM de IPcore de Xillinx (Software de desarrollo en VHDL), generada autom�áticamente. Se considera hacer cuatro tipos de módulos para que as�� el procesamiento se pueda hacer en paralelo. Se simplificar�á la estructura de XPregel con el fin de intentar aprovechar la particularidad de PageRank mencionada, que hace que XPregel no le saque el m�aximo partido. Despu�és se escribirá el c�ódigo, realizando una estructura escalable, ya que en la computación intervienen millones de páginas web. A continuación, se sintetizar�á y se probará el código en una FPGA. El �ultimo paso será una evaluaci�ón de la implementaci�ón, y de posibles mejoras en cuanto al consumo.
Resumo:
The Arp2/3 complex, a stable assembly of two actin-related proteins (Arp2 and Arp3) with five other subunits, caps the pointed end of actin filaments and nucleates actin polymerization with low efficiency. WASp and Scar are two similar proteins that bind the p21 subunit of the Arp2/3 complex, but their effect on the nucleation activity of the complex was not known. We report that full-length, recombinant human Scar protein, as well as N-terminally truncated Scar proteins, enhance nucleation by the Arp2/3 complex. By themselves, these proteins either have no effect or inhibit actin polymerization. The actin monomer-binding W domain and the p21-binding A domain from the C terminus of Scar are both required to activate Arp2/3 complex. A proline-rich domain in the middle of Scar enhances the activity of the W and A domains. Preincubating Scar and Arp2/3 complex with actin filaments overcomes the initial lag in polymerization, suggesting that efficient nucleation by the Arp2/3 complex requires assembly on the side of a preexisting filament—a dendritic nucleation mechanism. The Arp2/3 complex with full-length Scar, Scar containing P, W, and A domains, or Scar containing W and A domains overcomes inhibition of nucleation by the actin monomer-binding protein profilin, giving active nucleation over a low background of spontaneous nucleation. These results show that Scar and, likely, related proteins, such as the Cdc42 targets WASp and N-WASp, are endogenous activators of actin polymerization by the Arp2/3 complex.
Resumo:
A cellular protein, previously described as p35/38, binds to the complementary (−)-strand of the leader RNA and intergenic (IG) sequence of mouse hepatitis virus (MHV) RNA. The extent of the binding of this protein to IG sites correlates with the efficiency of the subgenomic mRNA transcription from that IG site, suggesting that it is a requisite transcription factor. We have purified this protein and determined by partial peptide sequencing that it is heterogeneous nuclear ribonucleoprotein (hnRNP) A1, an abundant, primarily nuclear protein. hnRNP A1 shuttles between the nucleus and cytoplasm and plays a role in the regulation of alternative RNA splicing. The MHV(−)-strand leader and IG sequences conform to the consensus binding motifs of hnRNP A1. Recombinant hnRNP A1 bound to these two RNA regions in vitro in a sequence-specific manner. During MHV infection, hnRNP A1 relocalizes from the nucleus to the cytoplasm, where viral replication occurs. These data suggest that hnRNP A1 is a cellular factor that regulates the RNA-dependent RNA transcription of the virus.
Resumo:
Histones found within transcriptionally competent and active regions of the genome are highly acetylated. Moreover, these highly acetylated histones have very short half-lives. Thus, both histone acetyltransferases and histone deacetylases must enrich within or near these euchromatic regions of the interphase chromatids. Using an antibody specific for highly acetylated histone H3, we have investigated the organization of transcriptionally active and competent chromatin as well as nuclear histone acetyltransferase and deacetylase activities. We observe an exclusion of highly acetylated chromatin around the periphery of the nucleus and an enrichment near interchromatin granule clusters (IGCs). The highly acetylated chromatin is found in foci that may reflect the organization of highly acetylated chromatin into “chromonema” fibers. Transmission electron microscopy of Indian muntjac fibroblast cell nuclei indicates that the chromatin associated with the periphery of IGCs remains relatively condensed, most commonly found in domains containing chromatin folded beyond 30 nm. Using electron spectroscopic imaging, we demonstrate that IGCs are clusters of ribonucleoprotein particles. The individual granules comprise RNA-rich fibrils or globular regions that fold into individual granules. Quantitative analysis of individual granules indicates that they contain variable amounts of RNA estimated between 1.5 and >10 kb. We propose that interchromatin granules are heterogeneous nuclear RNA-containing particles, some of which may be pre-mRNA generated by nearby transcribed chromatin. An intermediary zone between the IGC and surrounding chromatin is described that contains factors with the potential to provide specificity to the localization of sequences near IGCs.
Resumo:
To investigate the distribution of lipids through the Golgi complex, we analyzed the envelopes of several viruses that assemble in different subcompartments of the Golgi, as well as subcellular fractions. Our results indicate that each Golgi subcompartment has a distinct phospholipid composition due mainly to differences in the relative amounts of semilysobisphosphatidic acid (SLBPA), sphingomyelin, phosphatidylserine, and phosphatidylinositol. Interestingly, SLBPA is enriched in the adjacent Golgi networks compared with the Golgi stack, and this enrichment varies with cell type. The heterogeneous distribution of SLBPA through the Golgi complex suggests it may play an important role in the structure and/or function of this organelle.
Resumo:
The RNA cleavage reaction catalyzed by the hairpin ribozyme shows biphasic kinetics, and chase experiments show that the slow phase of the reaction results from reversible substrate binding to an inactive conformational isomer. To investigate the structural basis for the heterogeneous kinetics, we have developed an enzymatic RNA modification method that selectively traps substrate bound to the inactive conformer and allows the two forms of the ribozyme-substrate complex to be separated and analyzed by using both physical and kinetic strategies. The inactive form of the complex was trapped by the addition of T4 RNA ligase to a cleavage reaction, resulting in covalent linkage of the 5′ end of the substrate to the 3′ end of the ribozyme and in selective and quantitative ablation of the slow kinetic phase of the reaction. This result indicates that the inactive form of the ribozyme-substrate complex can adopt a conformation in which helices 2 and 3 are coaxially stacked, whereas the active form does not have access to this conformation, because of a sharp bend at the helical junction that presumably is stabilized by inter-domain tertiary contacts required for catalytic activity. These results were used to improve the activity of the hairpin ribozyme by designing new interfaces between the two domains, one containing a non-nucleotidic orthobenzene linkage and the other replacing the two-way junction with a three-way junction. Each of these modified ribozymes preferentially adopts the active conformation and displays improved catalytic efficiency.
Resumo:
The Arp2/3 complex is a stable assembly of seven protein subunits including two actin-related proteins (Arp2 and Arp3) and five novel proteins. Previous work showed that this complex binds to the sides of actin filaments and is concentrated at the leading edges of motile cells. Here, we show that Arp2/3 complex purified from Acanthamoeba caps the pointed ends of actin filaments with high affinity. Arp2/3 complex inhibits both monomer addition and dissociation at the pointed ends of actin filaments with apparent nanomolar affinity and increases the critical concentration for polymerization at the pointed end from 0.6 to 1.0 μM. The high affinity of Arp2/3 complex for pointed ends and its abundance in amoebae suggest that in vivo all actin filament pointed ends are capped by Arp2/3 complex. Arp2/3 complex also nucleates formation of actin filaments that elongate only from their barbed ends. From kinetic analysis, the nucleation mechanism appears to involve stabilization of polymerization intermediates (probably actin dimers). In electron micrographs of quick-frozen, deep-etched samples, we see Arp2/3 bound to sides and pointed ends of actin filaments and examples of Arp2/3 complex attaching pointed ends of filaments to sides of other filaments. In these cases, the angle of attachment is a remarkably constant 70 ± 7°. From these in vitro biochemical properties, we propose a model for how Arp2/3 complex controls the assembly of a branching network of actin filaments at the leading edge of motile cells.
Resumo:
Viruses with RNA genomes often capture and redirect host cell components to assist in mechanisms particular to RNA-dependent RNA synthesis. The nidoviruses are an order of positive-stranded RNA viruses, comprising coronaviruses and arteriviruses, that employ a unique strategy of discontinuous transcription, producing a series of subgenomic mRNAs linking a 5′ leader to distal portions of the genome. For the prototype coronavirus mouse hepatitis virus (MHV), heterogeneous nuclear ribonucleoprotein (hnRNP) A1 has been shown to be able to bind in vitro to the negative strand of the intergenic sequence, a cis-acting element found in the leader RNA and preceding each downstream ORF in the genome. hnRNP A1 thus has been proposed as a host factor in MHV transcription. To test this hypothesis genetically, we initially constructed MHV mutants with a very high-affinity hnRNP A1 binding site inserted in place of, or adjacent to, an intergenic sequence in the MHV genome. This inserted hnRNP A1 binding site was not able to functionally replace, or enhance transcription from, the intergenic sequence. This finding led us to test more directly the role of hnRNP A1 by analysis of MHV replication and RNA synthesis in a murine cell line that does not express this protein. The cellular absence of hnRNP A1 had no detectable effect on the production of infectious virus, the synthesis of genomic RNA, or the quantity or quality of subgenomic mRNAs. These results strongly suggest that hnRNP A1 is not a required host factor for MHV discontinuous transcription or genome replication.
Resumo:
We investigated the spatial pattern of expression of ipdC, a plant inducible gene involved in indoleacetic acid biosynthesis in Erwinia herbicola, among individual cells on plants to gain a better understanding of the role of this phenotype in the epiphytic ecology of bacteria and the factors involved in the regulation of ipdC. Nonpathogenic E. herbicola strain 299R harboring a transcriptional fusion of ipdC to gfp was inoculated onto bean plants, recovered from individual leaves 48 h after inoculation, and subjected to fluorescence in situ hybridization using a 16S rRNA oligonucleotide probe specific to strain 299R. Epifluorescence images captured through a rhodamine filter were used to distinguish the 5carboxytetramethylrhodamine-labeled cells of strain 299R from other leaf microflora. Quantification of the green fluorescence intensity of individual cells by analysis of digital images revealed that about 65% of the 299R cells recovered from bean leaves had higher ipdC expression than in culture. Additionally, 10% of the cells exhibited much higher levels of green fluorescence than the median fluorescence intensity, indicating that they are more heterogeneous with respect to ipdC expression on plants than in culture. Examination of 299R cells in situ on leaf surfaces by confocal laser scanning microscopy after fluorescence in situ hybridization of cells on leaf samples showed that even cells that were in close proximity exhibited dramatically different green fluorescence intensities, and thus, were in a physical or chemical microenvironment that induced differential expression of ipdC.
Resumo:
Based on the recent high-resolution laboratory experiments on propagating shear rupture, the constitutive law that governs shear rupture processes is discussed in view of the physical principles and constraints, and a specific constitutive law is proposed for shear rupture. It is demonstrated that nonuniform distributions of the constitutive law parameters on the fault are necessary for creating the nucleation process, which consists of two phases: (i) a stable, quasistatic phase, and (ii) the subsequent accelerating phase. Physical models of the breakdown zone and the nucleation zone are presented for shear rupture in the brittle regime. The constitutive law for shear rupture explicitly includes a scaling parameter Dc that enables one to give a common interpretation to both small scale rupture in the laboratory and large scale rupture as earthquake source in the Earth. Both the breakdown zone size Xc and the nucleation zone size L are prescribed and scaled by Dc, which in turn is prescribed by a characteristic length lambda c representing geometrical irregularities of the fault. The models presented here make it possible to understand the earthquake generation process from nucleation to unstable, dynamic rupture propagation in terms of physics. Since the nucleation process itself is an immediate earthquake precursor, deep understanding of the nucleation process in terms of physics is crucial for the short-term (or immediate) earthquake prediction.