652 resultados para Heliocentric orbits
Resumo:
Pós-graduação em Fisiopatologia em Clínica Médica - FMB
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Neste trabalho determinamos, utilizando Teoria Quântica de Campos em nível de árvore, a radiação escalar emitida por uma fonte em movimento circular uniforme no espaço-tempo plano de Minkowski, assumindo Gravitação Newtoniana, e no espaço-tempo curvo de um buraco negro sem carga e com momento angular nulo, assumindo Relatividade Geral. Efetuamos este cálculo analiticamente para o caso de Minkowski e numericamente no âmbito do espaço-tempo de Schwarzschild, sendo que neste espaço-tempo curvo obtivemos a forma analítica e a normalização dos modos nas regiões assintóticas. Verificamos que, para as órbitas circulares estáveis de acordo com a Relatividade Geral, a potência irradiada no caso de um buraco negro de Schwarzschild é menor do que a obtida no espaço-tempo de Minkowski assumindo a Gravitação Newtoniana. Obtemos também que apenas uma pequena parcela da radiação emitida é absorvida pelo buraco negro. Verificamos que a diferença entre as potências irradiadas em Schwarzschild e Minkowski diminui na medida em que aumentamos o valor da massa do campo. Em Schwarzschild, uma parcela cada vez maior da radiação emitida é absorvida pelo buraco negro na medida em que aumentamos o valor da massa do campo.
Resumo:
Pós-graduação em Física - FEG
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)