884 resultados para HISTORICAL DATA-ANALYSIS


Relevância:

90.00% 90.00%

Publicador:

Resumo:

In recent years, increasing focus has been made on making good business decisions utilizing the product of data analysis. With the advent of the Big Data phenomenon, this is even more apparent than ever before. But the question is how can organizations trust decisions made on the basis of results obtained from analysis of untrusted data? Assurances and trust that data and datasets that inform these decisions have not been tainted by outside agency. This study will propose enabling the authentication of datasets specifically by the extension of the RESTful architectural scheme to include authentication parameters while operating within a larger holistic security framework architecture or model compliant to legislation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This thesis proposes three novel models which extend the statistical methodology for motor unit number estimation, a clinical neurology technique. Motor unit number estimation is important in the treatment of degenerative muscular diseases and, potentially, spinal injury. Additionally, a recent and untested statistic to enable statistical model choice is found to be a practical alternative for larger datasets. The existing methods for dose finding in dual-agent clinical trials are found to be suitable only for designs of modest dimensions. The model choice case-study is the first of its kind containing interesting results using so-called unit information prior distributions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The importance of a thorough and systematic literature review has long been recognised across academic domains as critical to the foundation of new knowledge and theory evolution. Driven by an exponentially growing body of knowledge in the IS discipline, there has been a recent influx of guidance on how to conduct a literature review. As literature reviews are emerging as a standalone research method in itself, increasingly these method focused guidelines are of great interest, receiving acceptance at top tier IS publication outlets. Nevertheless, the finer details which offer justification for the selected content, and the effective presentation of supporting data has not been widely discussed in these method papers to date. This paper addresses this gap by exploring the concept of ‘literature profiling’ while arguing that it is a key aspect of a comprehensive literature review. The study establishes the importance of profiling for managing aspects such as quality assurance, transparency and the mitigation of selection bias. And then discusses how profiling can provide a valid basis for data analysis based on the attributes of selected literature. In essence, this study has conducted an archival analysis of literature (predominately from the IS domain) to present its main argument; the value for literature profiling, with supporting exemplary illustrations.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background The evaluation of the hand function is an essential element within the clinical practice. The usual assessments are focus on the ability to perform activities of daily life. The inclusion of instruments to measure kinematic variables provides a new approach to the assessment. Inertial sensors adapted to the hand could be used as a complementary instrument to the traditional assessment. Material: clinimetric assessment (Upper Limb Functional Index, Quick Dash), antrophometric variables (eight and weight), dynamometry (palm preasure) was taken. Functional analysis was made with Acceleglove system for the right hand and computer system. The glove has six acceleration sensor, one on each finger and another one on the reverse palm. Method Analytic, transversal approach. Ten healthy subject made six task on evaluation table (tripod pinch, lateral pinch and tip pinch, extension grip, spherical grip and power grip). Each task was made and measure three times, the second one was analyze for the results section. A Matlab script was created for the analysis of each movement and detection phase based on module vector. Results The module acceleration vector offers useful information of the hand function. The data analysis obtained during the performance of functional gestures allows to identify five different phases within the movement, three static phase and tow dynamic, each module vector was allied to one task. Conclusion Module vector variables could be used for the analysis of the different task made by the hand. Inertial sensor could be use as a complement for the traditional assessment system.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Big data analysis in healthcare sector is still in its early stages when comparing with that of other business sectors due to numerous reasons. Accommodating the volume, velocity and variety of healthcare data Identifying platforms that examine data from multiple sources, such as clinical records, genomic data, financial systems, and administrative systems Electronic Health Record (EHR) is a key information resource for big data analysis and is also composed of varied co-created values. Successful integration and crossing of different subfields of healthcare data such as biomedical informatics and health informatics could lead to huge improvement for the end users of the health care system, i.e. the patients.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The concept of big data has already outperformed traditional data management efforts in almost all industries. Other instances it has succeeded in obtaining promising results that provide value from large-scale integration and analysis of heterogeneous data sources for example Genomic and proteomic information. Big data analytics have become increasingly important in describing the data sets and analytical techniques in software applications that are so large and complex due to its significant advantages including better business decisions, cost reduction and delivery of new product and services [1]. In a similar context, the health community has experienced not only more complex and large data content, but also information systems that contain a large number of data sources with interrelated and interconnected data attributes. That have resulted in challenging, and highly dynamic environments leading to creation of big data with its enumerate complexities, for instant sharing of information with the expected security requirements of stakeholders. When comparing big data analysis with other sectors, the health sector is still in its early stages. Key challenges include accommodating the volume, velocity and variety of healthcare data with the current deluge of exponential growth. Given the complexity of big data, it is understood that while data storage and accessibility are technically manageable, the implementation of Information Accountability measures to healthcare big data might be a practical solution in support of information security, privacy and traceability measures. Transparency is one important measure that can demonstrate integrity which is a vital factor in the healthcare service. Clarity about performance expectations is considered to be another Information Accountability measure which is necessary to avoid data ambiguity and controversy about interpretation and finally, liability [2]. According to current studies [3] Electronic Health Records (EHR) are key information resources for big data analysis and is also composed of varied co-created values [3]. Common healthcare information originates from and is used by different actors and groups that facilitate understanding of the relationship for other data sources. Consequently, healthcare services often serve as an integrated service bundle. Although a critical requirement in healthcare services and analytics, it is difficult to find a comprehensive set of guidelines to adopt EHR to fulfil the big data analysis requirements. Therefore as a remedy, this research work focus on a systematic approach containing comprehensive guidelines with the accurate data that must be provided to apply and evaluate big data analysis until the necessary decision making requirements are fulfilled to improve quality of healthcare services. Hence, we believe that this approach would subsequently improve quality of life.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This review is focused on the impact of chemometrics for resolving data sets collected from investigations of the interactions of small molecules with biopolymers. These samples have been analyzed with various instrumental techniques, such as fluorescence, ultraviolet–visible spectroscopy, and voltammetry. The impact of two powerful and demonstrably useful multivariate methods for resolution of complex data—multivariate curve resolution–alternating least squares (MCR–ALS) and parallel factor analysis (PARAFAC)—is highlighted through analysis of applications involving the interactions of small molecules with the biopolymers, serum albumin, and deoxyribonucleic acid. The outcomes illustrated that significant information extracted by the chemometric methods was unattainable by simple, univariate data analysis. In addition, although the techniques used to collect data were confined to ultraviolet–visible spectroscopy, fluorescence spectroscopy, circular dichroism, and voltammetry, data profiles produced by other techniques may also be processed. Topics considered including binding sites and modes, cooperative and competitive small molecule binding, kinetics, and thermodynamics of ligand binding, and the folding and unfolding of biopolymers. Applications of the MCR–ALS and PARAFAC methods reviewed were primarily published between 2008 and 2013.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Increasingly larger scale applications are generating an unprecedented amount of data. However, the increasing gap between computation and I/O capacity on High End Computing machines makes a severe bottleneck for data analysis. Instead of moving data from its source to the output storage, in-situ analytics processes output data while simulations are running. However, in-situ data analysis incurs much more computing resource contentions with simulations. Such contentions severely damage the performance of simulation on HPE. Since different data processing strategies have different impact on performance and cost, there is a consequent need for flexibility in the location of data analytics. In this paper, we explore and analyze several potential data-analytics placement strategies along the I/O path. To find out the best strategy to reduce data movement in given situation, we propose a flexible data analytics (FlexAnalytics) framework in this paper. Based on this framework, a FlexAnalytics prototype system is developed for analytics placement. FlexAnalytics system enhances the scalability and flexibility of current I/O stack on HEC platforms and is useful for data pre-processing, runtime data analysis and visualization, as well as for large-scale data transfer. Two use cases – scientific data compression and remote visualization – have been applied in the study to verify the performance of FlexAnalytics. Experimental results demonstrate that FlexAnalytics framework increases data transition bandwidth and improves the application end-to-end transfer performance.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Summary Bisphosphonates can increase bone mineral density (BMD) in children with osteogenesis imperfecta (OI). In this study of adults with OI type I, risedronate increased BMD at lumbar spine (but not total hip) and decreased bone turnover. However, the fracture rate in these patients remained high. Introduction Intravenous bisphosphonates given to children with OI can increase BMD and reduce fracture incidence. Oral and/or intravenous bisphosphonates may have similar effects in adults with OI. We completed an observational study of the effect of risedronate in adults with OI type I. Methods Thirty-two adults (mean age, 39 years) with OI type I were treated with risedronate (total dose, 35 mg weekly) for 24 months. Primary outcome measures were BMD changes at lumbar spine (LS) and total hip (TH). Secondary outcome measures were fracture incidence, bone pain, and change in bone turnover markers (serum procollagen type I aminopropeptide (P1NP) and bone ALP). A meta-analysis of published studies of oral bisphosphonates in adults and children with OI was performed. Results Twenty-seven participants (ten males and seventeen females) completed the study. BMD increased at LS by 3.9% (0.815 vs. 0.846 g/cm 2, p=0.007; mean Z-score, -1.93 vs. -1.58, p=0.002), with no significant change at TH. P1NP fell by 37% (p=0.00041), with no significant change in bone ALP (p=0.15). Bone pain did not change significantly (p=0.6). Fracture incidence remained high, with 25 clinical fractures and 10 major fractures in fourteen participants (0.18 major fractures per person per year), with historical data of 0.12 fractures per person per year. The meta-analysis did not demonstrate a significant difference in fracture incidence in patients with OI treated with oral bisphosphonates. Conclusions Risedronate in adults with OI type I results in modest but significant increases in BMD at LS, and decreased bone turnover. However, this may be insufficient to make a clinically significant difference to fracture incidence.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Objective. To elucidate the relative importance of the HLA-DR and HLA-DQ loci in conferring genetic predisposition to rheumatoid arthritis (RA). Methods. HLA-DRB1 and HLA-DQB1 alleles were typed in a set of 685 patients with RA using sequence-specific polymerase chain reaction. Allele and phenotype frequencies were compared with those in 2 large sets of historical, ethnically matched healthy controls, using the relative predispositional effect method. Results. Positive association was confirmed with the shared epitope positive HLA-DRB1 alleles associated with RA in Caucasians. A significant susceptibility effect was observed with HLA-DRB1*09, described in other ethnically diverse populations but not in Caucasians. A significant underrepresentation of the HLA-DRB1*0103 variant was noted among the RA cases, supporting the proposed protective role of the DERAA motif at residues 70-74 of the DRβ molecule. No HLA-DRB1 independent association of the HLA-DQB1 alleles, implicated in predisposing to RA, was evident. Conclusion. These data corroborate the shared epitope hypothesis of susceptibility to RA and provide strong evidence for the DRB1 locus as the primary RA susceptibility factor in the HLA region.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper proposes a linear quantile regression analysis method for longitudinal data that combines the between- and within-subject estimating functions, which incorporates the correlations between repeated measurements. Therefore, the proposed method results in more efficient parameter estimation relative to the estimating functions based on an independence working model. To reduce computational burdens, the induced smoothing method is introduced to obtain parameter estimates and their variances. Under some regularity conditions, the estimators derived by the induced smoothing method are consistent and have asymptotically normal distributions. A number of simulation studies are carried out to evaluate the performance of the proposed method. The results indicate that the efficiency gain for the proposed method is substantial especially when strong within correlations exist. Finally, a dataset from the audiology growth research is used to illustrate the proposed methodology.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

For clustered survival data, the traditional Gehan-type estimator is asymptotically equivalent to using only the between-cluster ranks, and the within-cluster ranks are ignored. The contribution of this paper is two fold: - (i) incorporating within-cluster ranks in censored data analysis, and; - (ii) applying the induced smoothing of Brown and Wang (2005, Biometrika) for computational convenience. Asymptotic properties of the resulting estimating functions are given. We also carry out numerical studies to assess the performance of the proposed approach and conclude that the proposed approach can lead to much improved estimators when strong clustering effects exist. A dataset from a litter-matched tumorigenesis experiment is used for illustration.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Statistical methods are often used to analyse commercial catch and effort data to provide standardised fishing effort and/or a relative index of fish abundance for input into stock assessment models. Achieving reliable results has proved difficult in Australia's Northern Prawn Fishery (NPF), due to a combination of such factors as the biological characteristics of the animals, some aspects of the fleet dynamics, and the changes in fishing technology. For this set of data, we compared four modelling approaches (linear models, mixed models, generalised estimating equations, and generalised linear models) with respect to the outcomes of the standardised fishing effort or the relative index of abundance. We also varied the number and form of vessel covariates in the models. Within a subset of data from this fishery, modelling correlation structures did not alter the conclusions from simpler statistical models. The random-effects models also yielded similar results. This is because the estimators are all consistent even if the correlation structure is mis-specified, and the data set is very large. However, the standard errors from different models differed, suggesting that different methods have different statistical efficiency. We suggest that there is value in modelling the variance function and the correlation structure, to make valid and efficient statistical inferences and gain insight into the data. We found that fishing power was separable from the indices of prawn abundance only when we offset the impact of vessel characteristics at assumed values from external sources. This may be due to the large degree of confounding within the data, and the extreme temporal changes in certain aspects of individual vessels, the fleet and the fleet dynamics.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The article describes a generalized estimating equations approach that was used to investigate the impact of technology on vessel performance in a trawl fishery during 1988-96, while accounting for spatial and temporal correlations in the catch-effort data. Robust estimation of parameters in the presence of several levels of clustering depended more on the choice of cluster definition than on the choice of correlation structure within the cluster. Models with smaller cluster sizes produced stable results, while models with larger cluster sizes, that may have had complex within-cluster correlation structures and that had within-cluster covariates, produced estimates sensitive to the correlation structure. The preferred model arising from this dataset assumed that catches from a vessel were correlated in the same years and the same areas, but independent in different years and areas. The model that assumed catches from a vessel were correlated in all years and areas, equivalent to a random effects term for vessel, produced spurious results. This was an unexpected finding that highlighted the need to adopt a systematic strategy for modelling. The article proposes a modelling strategy of selecting the best cluster definition first, and the working correlation structure (within clusters) second. The article discusses the selection and interpretation of the model in the light of background knowledge of the data and utility of the model, and the potential for this modelling approach to apply in similar statistical situations.