475 resultados para HAMSTER


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Insertion of foreign DNA into an established mammalian genome can extensively alter the patterns of cellular DNA methylation. Adenovirus type 12 (Ad12)-transformed hamster cells, Ad12-induced hamster tumor cells, or hamster cells carrying integrated DNA of bacteriophage lambda were used as model systems. DNA methylation levels were examined by cleaving cellular DNA with Hpa II, Msp I, or Hha I, followed by Southern blot hybridization with 32P-labeled, randomly selected cellular DNA probes. For several, but not all, cellular DNA segments investigated, extensive increases in DNA methylation were found in comparison with the methylation patterns in BHK21 or primary Syrian hamster cells. In eight different Ad12-induced hamster tumors, moderate increases in DNA methylation were seen. Increased methylation of cellular genes was also documented in two hamster cell lines with integrated Ad12 DNA without the Ad12-transformed phenotype, in one cloned BHK21 cell line with integrated plasmid DNA, and in at least three cloned BHK21 cell lines with integrated lambda DNA. By fluorescent in situ hybridization, the cellular hybridization probes were located to different hamster chromosomes. The endogenous intracisternal A particle genomes showed a striking distribution on many hamster chromosomes, frequently on their short arms. When BHK21 hamster cells were abortively infected with Ad12, increases in cellular DNA methylation were not seen. Thus, Ad12 early gene products were not directly involved in increasing cellular DNA methylation. We attribute the alterations in cellular DNA methylation, at least in part, to the insertion of foreign DNA. Can alterations in the methylation profiles of hamster cellular DNA contribute to the generation of the oncogenic phenotype?

Relevância:

10.00% 10.00%

Publicador:

Resumo:

O-linked N-acetylglucosamine (O-GlcNAc) is an abundant and dynamic posttranslational modification composed of a single monosaccharide, GlcNAc, glycosidically composed of a single monosaccharide, GlcNAc, glycosidically linked to the side-chain hydroxyl of serine or threonine residues. Although O-GlcNAc occurs on a myriad of nuclear and cytoplasmic proteins, only a few have thus far been identified. These O-GlcNAc-bearing proteins are also modified by phosphorylation and form reversible multimeric complexes. Here we present evidence for O-GlcNAc glycosylation of the oncoprotein c-Myc, a helix-loop-helix/leucine zipper phosphoprotein that heterodimerizes with Max and participates in the regulation of gene transcription in normal and neoplastic cells. O-GlcNAc modification of c-Myc is shown by three different methods: (i) demonstration of lectin binding to in vitro translated protein using a protein-protein interaction mobility-shift assay; (ii) glycosidase or glycosyltransferase treatment of in vitro translated protein analyzed by lectin affinity chromatography; and (iii) direct characterization of the sugar moieties on purified recombinant protein overexpressed in either insect cells or Chinese hamster ovary cells. Analyses of serial deletion mutants of c-Myc further suggest that the O-GlcNAc site(s) are located within or near the N-terminal transcription activation/malignant transformation domain, a region where mutations of c-Myc that are frequently found in Burkitt and AIDS-related lymphomas cluster.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Scrapie is a transmissible neurodegenerative disease that appears to result from an accumulation in the brain of an abnormal protease-resistant isoform of prion protein (PrP) called PrPsc. Conversion of the normal, protease-sensitive form of PrP (PrPc) to protease-resistant forms like PrPsc has been demonstrated in a cell-free reaction composed largely of hamster PrPc and PrPsc. We now report studies of the species specificity of this cell-free reaction using mouse, hamster, and chimeric PrP molecules. Combinations of hamster PrPc with hamster PrPsc and mouse PrPc with mouse PrPsc resulted in the conversion of PrPc to protease-resistant forms. Protease-resistant PrP species were also generated in the nonhomologous reaction of hamster PrPc with mouse PrPsc, but little conversion was observed in the reciprocal reaction. Glycosylation of the PrPc precursors was not required for species specificity in the conversion reaction. The relative conversion efficiencies correlated with the relative transmissibilities of these strains of scrapie between mice and hamsters. Conversion experiments performed with chimeric mouse/hamster PrPc precursors indicated that differences between PrPc and PrPsc at residues 139, 155, and 170 affected the conversion efficiency and the size of the resultant protease-resistant PrP species. We conclude that there is species specificity in the cell-free interactions that lead to the conversion of PrPc to protease-resistant forms. This specificity may be the molecular basis for the barriers to interspecies transmission of scrapie and other transmissible spongiform encephalopathies in vivo.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The DNA-dependent protein kinase (DNA-PK) consists of three polypeptide components: Ku-70, Ku-80, and an approximately 350-kDa catalytic subunit (p350). The gene encoding the Ku-80 subunit is identical to the x-ray-sensitive group 5 complementing gene XRCC5. Expression of the Ku-80 cDNA rescues both DNA double-strand break (DSB) repair and V(D)J recombination in group 5 mutant cells. The involvement of Ku-80 in these processes suggests that the underlying defect in these mutant cells may be disruption of the DNA-PK holoenzyme. In this report we show that the p350 kinase subunit is deleted in cells derived from the severe combined immunodeficiency mouse and in the Chinese hamster ovary cell line V-3, both of which are defective in DSB repair and V(D)J recombination. A centromeric fragment of human chromosome 8 that complements the scid defect also restores p350 protein expression and rescues in vitro DNA-PK activity. These data suggest the scid gene may encode the p350 protein or regulate its expression and are consistent with a model whereby DNA-PK is a critical component of the DSB-repair pathway.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Src homology 2 (SH2) domain-mediated interactions with phosphotyrosine residues are critical in many intracellular signal transduction pathways. Attempts to understand the determinants of specificity and selectivity of these interactions have prompted many binding studies that have used several techniques. Some discrepancies, in both the absolute and relative values of the dissociation constants for particular interactions, are apparent. To establish the correct dissociation constants and to understand the origin of these differences, we have analyzed three previously determined interactions using the techniques of surface plasmon resonance and isothermal titration calorimetry. We find that the binding of SH2 domains to phosphopeptides is weaker than generally presumed. A phosphopeptide based on the hamster polyoma middle tumor antigen interacts with the SH2 domain from Src with an equilibrium dissociation constant (Kd) of 600 nM; a phosphopeptide based on one binding site from the platelet-derived growth factor receptor binds to the N-terminal SH2 domain of the 1-phosphatidylinositol 3-kinase p85 subunit with a Kd of 300 nM; and a phosphopeptide based on the C terminus of Lck binds to the SH2 domain of Lck with a Kd of 4 microM. In addition, we demonstrate that avidity effects that result from the dimerization of glutathione S-transferase fusion proteins with SH2 domains could be responsible for overestimates of affinities for these interactions previously studied by surface plasmon resonance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Inhibitors of glycosylation provide a tool for studying the biology of glycoconjugates. One class of inhibitors consists of glycosides that block glycoconjugate synthesis by acting as primers of free oligosaccharide chains. A typical primer contains one sugar linked to a hydrophobic aglycone. In this report, we describe a way to use disaccharides as primers. Chinese hamster ovary cells readily take up glycosides containing a pentose linked to naphthol, but they take up hexosides less efficiently and disaccharides not at all. Linking phenanthrol to a hexose improves its uptake dramatically but has no effect on disaccharides. To circumvent this problem, analogs of Xyl beta 1-->6Gal beta-O-2-naphthol were tested as primers of glycosaminoglycan chains. The unmodified disaccharide did not prime, but methylated derivatives had activity in the order Xyl beta 1-->6Gal(Me)3-beta-O-2-naphthol > Xyl beta 1-->6Gal (Me)2 beta-O-2-naphthol >> Xyl beta 1-->6Gal(Me)beta-O-2-naphthol. Acetylated Xyl beta 1-->6Gal beta-O-2-naphthol also primed glycosaminoglycans efficiently, suggesting that the terminal xylose residue was exposed by removing the acetyl groups. The general utility of using acetyl groups to create disaccharide primers was shown by the priming of oligosaccharides on peracetylated Gal beta 1-->4GlcNAc beta-O-naphthalenemethanol. This disaccharide inhibited sialyl Lewis X expression on HL-60 cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have employed an inverse engineering strategy based on quantitative proteome analysis to identify changes in intracellular protein abundance that correlate with increased specific recombinant monoclonal antibody production (qMab) by engineered murine myeloma (NSO) cells. Four homogeneous NSO cell lines differing in qMab were isolated from a pool of primary transfectants. The proteome of each stably transfected cell line was analyzed at mid-exponential growth phase by two-dimensional gel electrophoresis (2D-PAGE) and individual protein spot volume data derived from digitized gel images were compared statistically. To identify changes in protein abundance associated with qMab clatasets were screened for proteins that exhibited either a linear correlation with cell line qMab or a conserved change in abundance specific only to the cell line with highest qMab. Several proteins with altered abundance were identified by mass spectrometry. Proteins exhibiting a significant increase in abundance with increasing qMab included molecular chaperones known to interact directly with nascent immunoglobulins during their folding and assembly (e.g., BiP, endoplasmin, protein disulfide isomerase). 2D-PAGE analysis showed that in all cell lines Mab light chain was more abundant than heavy chain, indicating that this is a likely prerequisite for efficient Mab production. In summary, these data reveal both the adaptive responses and molecular mechanisms enabling mammalian cells in culture to achieve high-level recombinant monoclonal antibody production. (C) 2004 Wiley Periodicals, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Exogenous transfer RNAs (tRNAs) favor translation of bovine papillomavirus 1 wild-type (wt) L1 mRNA in in vitro translation systems (Zhou et al. 1999, J. Virol., 73, 4972-4982). We, therefore, investigated whether papillomavirus (PV) wt L1 protein expression could be enhanced in eukaryotic cells following exogenous tRNA supplementation. Both Chinese hamster ovary (CHO) and Cos1 cells, transfected with PV1 wt L1 genes, effectively transcribed the genes but did not translate them. However, L1 protein translation was demonstrated following co-transfection with the L1 gene and a gene expressing tRNA(Ser)(CGA). Cell lines, stably transfected with a bovine papillomavirus 1 (BPV1) wt L1 expression construct, produced L1 protein after the transfection of the tRNA(Ser)(CGA) gene, but not following the transfection with basal vectors, suggesting that tRNA(Ser)(CGA) gene enhanced wt L1 translation as a result of endogenous tRNA alterations and phosphorylation of translation initiation factors elF4E and elF2alpha in the tRNA(Ser)(CGA) transfected L1 cell lines. The tRNA(Ser)(CGA) gene expression significantly reduced translation of L1 proteins expressed from codon-modified (HB) PV L1 genes utilizing mammalian preferred codons, but had variable effects on translation of green fluorescent proteins (GFPs) expressed from six serine GFP variants. The changes of tRNA pools appear to match the codon composition of PV wt and HB L1 genes and serine GFP variants to regulate translation of their mRNAs. These findings demonstrate for the first time in eukaryotic cells that translation of the target genes can be differentially influenced by the provision of a single tRNA expression construct.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Interactions of mercury(II) with the microtubule network of cells may lead to genotoxicity. Complexation of mercury(II) with EDTA is currently being discussed for its employment in detoxification processes of polluted sites. This prompted us to re-evaluate the effects of such complexing agents on certain aspects of mercury toxicity, by examining the influences of mercury(H) complexes on tubulin assembly and kinesin-driven motility of microtubules. The genotoxic effects were studied using the micronucleus assay in V79 Chinese hamster fibroblasts. Mercury(II) complexes with EDTA and related chelators interfered dose-dependently with tubulin assembly and microtubule motility in vitro. The no-effect-concentration for assembly inhibition was 1muM of complexed Hg(II), and for inhibition of motility it was 0.05 muM, respectively. These findings are supported on the genotoxicity level by the results of the micronucleus assay, with micronuclei being induced dose-dependently starting at concentrations of about 0.05 muM of complexed Hg(II). Generally, the no-effect-concentrations for complexed mercury(II) found in the cell-free systems and in cellular assays (including the micronucleus test) were identical with or similar to results for mercury tested in the absence of chelators. This indicates that mercury(II) has a much higher affinity to sulfhydryls of cytoskeletal proteins than to this type of complexing agents. Therefore, the suitability of EDTA and related compounds for remediation of environmental mercury contamination or for other detoxification purposes involving mercury has to be questioned. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Adhesion of erythrocytes infected with the malaria parasite Plasmodium falciparum to human host receptors is a process associated with severe malarial pathology. A number of in vitro cell lines are available as models for these adhesive processes, including Chinese hamster ovary (CHO) cells which express the placental adhesion receptor chondroitin-4-sulphate (CSA) on their surface. CHO-745 cells, a glycosaminoglycan-negative mutant CHO cell line lacking CSA and other reported P. falciparum adhesion receptors, are often used for recombinant expression of host receptors and for receptor binding studies. In this study we show that P. falciparum-infected erythrocytes can be easily selected for adhesion to an endogenous receptor on the surface of CHO-745 cells, bringing into question the validity of using these cells as a tool for P. falciparum adhesin expression studies. The adhesive interaction between CHO-745 cells and parasitized erythrocytes described here is not mediated by the known P. falciparum adhesion receptors CSA, CD36, or ICAM-1. However, we found that CHO-745-selected parasitized erythrocytes bind normal human IgM and that adhesion to CHO-745 cells is inhibited by protein A in the presence of serum, but not in its absence, indicating a non-specific inhibitory effect. Thus, protein A, which has been used as an inhibitor for a recently described interaction between infected erythrocytes and the placenta, may not be an appropriate in vitro inhibitor for understanding in vivo adhesive interactions. (c) 2005 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The snake venom group C prothrombin activators contain a number of components that enhance the rate of prothrombin activation. The cloning and expression of full-length cDNA for one of these components, an activated factor X (factor Xa)-like protease from Pseudonaja textilis as well as the generation of functional chimeric constructs with procoagulant activity were described. The complete cDNA codes for a propeptide, light chain, activation peptide (AP) and heavy chain related in sequence to mammalian factor X. Efficient expression of the protease was achieved with constructs where the AP was deleted and the cleavage sites between the heavy and light chains modified, or where the AP was replaced with a peptide involved in insulin receptor processing. In human kidney cells (H293F) transfected with these constructs, up to 80% of the pro-form was processed to heavy and light chains. Binding of the protease to barium citrate and use of specific antibodies demonstrated that gamma-carboxylation of glutamic acid residues had occurred on the light chain in both cases, as observed in human factor Xa and the native P. textilis protease. The recombinant protease caused efficient coagulation of whole citrated blood and citrated plasma that was enhanced by the presence of Ca2+. This study identified the complete cDNA sequence of a factor Xa-like protease from P. textilis and demonstrated for the first time the expression of a recombinant form of P. textilis protease capable of blood coagulation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The yeast genome encodes seven oxysterol binding protein homologs, Osh1p-Osh7p, which have been implicated in regulating intracellular lipid and vesicular transport. Here, we show that both Osh6p and Osh7p interact with Vps4p, a member of the AAA ( ATPases associated with a variety of cellular activities) family. The coiled-coil domain of Osh7p was found to interact with Vps4p in a yeast two-hybrid screen and the interaction between Osh7p and Vps4p appears to be regulated by ergosterol. Deletion of VPS4 induced a dramatic increase in the membrane-associated pools of Osh6p and Osh7p and also caused a decrease in sterol esterification, which was suppressed by overexpression of OSH7. Lastly, overexpression of the coiled-coil domain of Osh7p (Osh7pCC) resulted in a multi-vesicular body sorting defect, suggesting a dominant negative role of Osh7pCC possibly through inhibiting Vps4p function. Our data suggest that a common mechanism may exist for AAA proteins to regulate the membrane association of yeast OSBP proteins and that these two protein families may function together to control subcellular lipid transport.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oxysterol binding protein (OSBP) and its homologs have been shown to regulate lipid metabolism and vesicular transport. However, the exact molecular function of individual OSBP homologs remains uncharacterized. Here we demonstrate that the yeast OSBP homolog, Osh6p, bound phosphatidic acid and phosphoinositides via its N-terminal half containing the conserved OSBP-related domain (ORD). Using a green fluorescent protein fusion chimera, Osh6p was found to localize to the cytosol and patch-like or punctate structures in the vicinity of the plasma membrane. Further examination by domain mapping demonstrated that the N-terminal half was associated with FM4-64 positive membrane compartments; however, the C-terminal half containing a putative coiled-coil was localized to the nucleoplasm. Functional analysis showed that the deletion of OSH6 led to a significant increase in total cellular ergosterols, whereas OSH6 overexpression caused both a significant decrease in ergosterol levels and resistance to nystatin. Oleate incorporation into sterol esters was affected in OSH6 overexpressing cells. However, Lucifer yellow internalization, and FM4-64 uptake and transport were unaffected in both OSH6 deletion and overexpressing cells. Furthermore, osh6 Delta exhibited no defect in carboxypeptidase Y transport and maturation. Lastly, we demonstrated that both the conserved ORD and the putative coiled-coil motif were indispensable for the in vivo function of Osh6p. These data suggest that Osh6p plays a role primarily in regulating cellular sterol metabolism, possibly stero transport.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

On release from cardiac mast cells, alpha-chymase converts angiotensin I (Ang I) to Ang II. In addition to Ang II formation, alpha-chymase is capable of activating TGF-beta 1 and IL-1 beta, forming endothelins consisting of 31 amino acids, degrading endothelin-1, altering lipid metabolism, and degrading the extracellular matrix. Under physiological conditions the role of chymase in the mast cells of the heart is uncertain. In pathological situations, chymase may be secreted and have important effects on the heart. Thus, in animal models of cardiomyopathy, pressure overload, and myocardial infarction, there are increases in both chymase mRNA levels and chymase activity in the heart. In human diseased heart homogenates, alterations in chymase activity have also been reported. These findings have raised the possibility that inhibition of chymase may have a role in the therapy of cardiac disease. The selective chymase inhibitors developed to date include TY-51076, SUN-C8257, BCEAB, NK320, and TEI-E548. These have yet to be tested in humans, but promising results have been obtained in animal models of myocardial infarction, cardiomyopathy, and tachycardia-induced heart failure. It seems likely that orally active inhibitors of chymase could have a place in the treatment of cardiac diseases where injury-induced mast cell degranulation contributes to the pathology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Monoclonal antibodies (Mab) are heterotetramers consisting of an equimolar ratio of heavy chain (HC) and light chain (LC) polypeptides. Accordingly, most recombinant Mab expression systems utilize an equimolar ratio of heavy chain (he) to light chain (lc) genes encoded on either one or two plasmids. However, there is no evidence to suggest that this gene ratio is optimal for stable or transient production of recombinant Mab. In this study we have determined the optimal ratio of hc:lc genes for production of a recombinant IgG(4) Mab, cB72.3, by Chinese hamster ovary (CHO) cells using both empirical and mathematical modeling approaches. Polyethyleneimine-mediated transient expression of cB72.3 at varying ratios of hc:lc genes encoded on separate plasmids yielded an optimal Mab titer at a hc:lc gene ratio of 3:2; a conclusion confirmed by separate mathematical modeling of the Mab folding and assembly process using transient expression data. On the basis of this information, we hypothesized that utilization of he genes at low hc:lc gene ratios is more efficient. To confirm this, cB72.3 Mab was transiently produced by CHO cells at constant he and varying lc gene dose. Under these conditions, Mab yield was increased with a concomitant increase in lc gene dose. To determine if the above findings also apply to stably transfected CHO cells producing recombinant Mab, we compared the intra- and extracellular ratios of HC and LC polypeptides for three GS-CHO cells lines transfected with a 1:1 ratio of hc:lc genes and selected for stable expression of the same recombinant Mab, cB72.3. Intra- and extracellular HC:LC polypeptide ratios ranged from 1:2 to 1:5, less than that observed on transient expression of the same Mab in parental CHO cells using the same vector. In conclusion, our data suggest that the optimal ratio of hc:lc genes used for transient and stable expression of Mab differ. In the case of the latter, we infer that optimal Mab production by stably transfected cells represents a compromise between HC abundance limiting productivity and the requirement for excess LC to render Mab folding and assembly more efficient.