969 resultados para Griffin, Jasper
Resumo:
We have generated a mouse where the clotting factor IX (FIX) gene has been disrupted by homologous recombination. The FIX nullizygous (−/−) mouse was devoid of factor IX antigen in plasma. Consistent with the bleeding disorder, the factor IX coagulant activities for wild-type (+/+), heterozygous (+/−), and homozygous (−/−) mice were 92%, 53%, and <5%, respectively, in activated partial thromboplastin time assays. Plasma factor IX activity in the deficient mice (−/−) was restored by introducing wild-type murine FIX gene via adenoviral vectors. Thus, these factor IX-deficient mice provide a useful animal model for gene therapy studies of hemophilia B.
Resumo:
CC chemokine receptor 2 (CCR2) is a prominent receptor for the monocyte chemoattractant protein (MCP) group of CC chemokines. Mice generated by gene targeting to lack CCR2 exhibit normal leukocyte rolling but have a pronounced defect in MCP-1-induced leukocyte firm adhesion to microvascular endothelium and reduced leukocyte extravasation. Constitutive macrophage trafficking into the peritoneal cavity was not significantly different between CCR2-deficient and wild-type mice. However, after intraperitoneal thioglycollate injection, the number of peritoneal macrophages in CCR2-deficient mice did not rise above basal levels, whereas in wild-type mice the number of macrophages at 36 h was ≈3.5 times the basal level. The CCR2-deficient mice showed enhanced early accumulation and delayed clearance of neutrophils and eosinophils. However, by 5 days neutrophils and eosinophils in both CCR2-deficient and wild-type mice had returned to near basal levels, indicating that resolution of this inflammatory response can occur in the absence of macrophage influx and CCR2-mediated activation of the resident peritoneal macrophages. After intravenous injection with yeast β-glucan, wild-type mice formed numerous large, well-defined granulomas throughout the liver parenchyma, whereas CCR2-deficient mice had much fewer and smaller granulomas. These results demonstrate that CCR2 is a major regulator of induced macrophage trafficking in vivo.
Resumo:
The neurosteroid 3α-hydroxysteroid-5α-pregnan-20-one (allopregnanolone) acts as a positive allosteric modulator of γ-aminobutyric acid at γ-aminobutyric acid type A receptors and hence is a powerful anxiolytic, anticonvulsant, and anesthetic agent. Allopregnanolone is synthesized from progesterone by reduction to 5α-dihydroprogesterone, mediated by 5α-reductase, and by reduction to allopregnanolone, mediated by 3α-hydroxysteroid dehydrogenase (3α-HSD). Previous reports suggested that some selective serotonin reuptake inhibitors (SSRIs) could alter concentrations of allopregnanolone in human cerebral spinal fluid and in rat brain sections. We determined whether SSRIs directly altered the activities of either 5α-reductase or 3α-HSD, using an in vitro system containing purified recombinant proteins. Although rats appear to express a single 3α-HSD isoform, the human brain contains several isoforms of this enzyme, including a new isoform we cloned from human fetal brains. Our results indicate that the SSRIs fluoxetine, sertraline, and paroxetine decrease the Km of the conversion of 5α-dihydroprogesterone to allopregnanolone by human 3α-HSD type III 10- to 30-fold. Only sertraline inhibited the reverse oxidative reaction. SSRIs also affected conversions of androgens to 3α- and 3α, 17β-reduced or -oxidized androgens mediated by 3α-HSD type IIBrain. Another antidepressant, imipramine, was without any effect on allopregnanolone or androstanediol production. The region-specific expression of 3α-HSD type IIBrain and 3α-HSD type III mRNAs suggest that SSRIs will affect neurosteroid production in a region-specific manner. Our results may thus help explain the rapid alleviation of the anxiety and dysphoria associated with late luteal phase dysphoria disorder and major unipolar depression by these SSRIs.
Resumo:
The degradation rate of 3-hydroxy-3-methylglutaryl CoA reductase (HMG-R), a key enzyme of the mevalonate pathway, is regulated through a feedback mechanism by the mevalonate pathway. To discover the intrinsic determinants involved in the regulated degradation of the yeast HMG-R isozyme Hmg2p, we replaced small regions of the Hmg2p transmembrane domain with the corresponding regions from the other, stable yeast HMG-R isozyme Hmg1p. When the first 26 amino acids of Hmg2p were replaced with the same region from Hmg1p, Hmg2p was stabilized. The stability of this mutant was not due to mislocalization, but rather to an inability to be recognized for degradation. When amino acid residues 27–54 of Hmg2p were replaced with those from Hmg1p, the mutant was still degraded, but its degradation rate was poorly regulated. The degradation of this mutant was still dependent on the first 26 amino acid residues and on the function of the HRD genes. These mutants showed altered ubiquitination levels that were well correlated with their degradative phenotypes. Neither determinant was sufficient to impart regulated degradation to Hmg1p. These studies provide evidence that there are sequence determinants in Hmg2p necessary for degradation and optimal regulation, and that independent processes may be involved in Hmg2p degradation and its regulation.
Resumo:
Anticardiolipin (anti-CL) antibodies, diagnostic for antiphospholipid antibody syndrome, are associated with increased risks of venous and arterial thrombosis. Because CL selectively enhances activated protein C/protein S-dependent anticoagulant activities in purified systems and because CL is not known to be a normal plasma component, we searched for CL in plasma. Plasma lipid extracts [chloroform/methanol (2:1, vol/vol)] were subjected to analyses by using TLC, analytical HPLC, and MS. A plasma lipid component was purified that was indistinguishable from reference CL (M:1448). When CL in 40 fasting plasma lipid extracts (20 males, 20 females) was quantitated by using HPLC, CL (mean ± SD) was 14.9 ± 3.7 μg/ml (range 9.1 to 24.2) and CL was not correlated with phosphatidylserine (3.8 ± 1.7 μg/ml), phosphatidylethanolamine (64 ± 20 μg/ml), or choline-containing phospholipid (1,580 ± 280 μg/ml). Based on studies of fasting blood donors, CL (≥94%) was recovered in very low density, low density, and high density lipoproteins (11 ± 5.3%, 67 ± 11.0%, and 17 ± 10%, respectively), showing that the majority of plasma CL (67%) is in low density lipoprotein. Analysis of relative phospholipid contents of lipoproteins indicated that high density lipoprotein is selectively enriched in CL and phosphatidylethanolamine. These results shows that CL is a normal plasma component and suggest that the epitopes of antiphospholipid antibodies could include CL or oxidized CL in lipoproteins or in complexes with plasma proteins (e.g., β2-glycoprotein I, prothrombin, protein C, or protein S) or with platelet or endothelial surface proteins.
Resumo:
An approach to analyzing single-nucleotide polymorphisms (SNPs) found in the human genome has been developed that couples a recently developed invasive cleavage assay for nucleic acids with detection by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). The invasive cleavage assay is a signal amplification method that enables the analysis of SNPs by MALDI-TOF MS directly from human genomic DNA without the need for initial target amplification by PCR. The results presented here show the successful genotyping by this approach of twelve SNPs located randomly throughout the human genome. Conventional Sanger sequencing of these SNP positions confirmed the accuracy of the MALDI-TOF MS analysis results. The ability to unambiguously detect both homozygous and heterozygous genotypes is clearly demonstrated. The elimination of the need for target amplification by PCR, combined with the inherently rapid and accurate nature of detection by MALDI-TOF MS, gives this approach unique and significant advantages in the high-throughput genotyping of large numbers of SNPs, useful for locating, identifying, and characterizing the function of specific genes.
Resumo:
Objective: To assess whether provision of educational leaflets or questions on contraception improves knowledge of contraception in women taking the combined contraceptive pill.
Resumo:
Objective: To assess the effectiveness of care in general practice for people with diabetes.
Resumo:
Objective To assess the effect of additional training of practice nurses and general practitioners in patient centred care on the lifestyle and psychological and physiological status of patients with newly diagnosed type 2 diabetes.
Resumo:
With increasing interest in the effects of elevated atmospheric CO2 on plant growth and the global carbon balance, there is a need for greater understanding of how plants respond to variations in atmospheric partial pressure of CO2. Our research shows that elevated CO2 produces significant fine structural changes in major cellular organelles that appear to be an important component of the metabolic responses of plants to this global change. Nine species (representing seven plant families) in several experimental facilities with different CO2-dosing technologies were examined. Growth in elevated CO2 increased numbers of mitochondria per unit cell area by 1.3–2.4 times the number in control plants grown in lower CO2 and produced a statistically significant increase in the amount of chloroplast stroma (nonappressed) thylakoid membranes compared with those in lower CO2 treatments. There was no observable change in size of the mitochondria. However, in contrast to the CO2 effect on mitochondrial number, elevated CO2 promoted a decrease in the rate of mass-based dark respiration. These changes may reflect a major shift in plant metabolism and energy balance that may help to explain enhanced plant productivity in response to elevated atmospheric CO2 concentrations.
Resumo:
Leaf dark respiration (R) is an important component of plant carbon balance, but the effects of rising atmospheric CO2 on leaf R during illumination are largely unknown. We studied the effects of elevated CO2 on leaf R in light (RL) and in darkness (RD) in Xanthium strumarium at different developmental stages. Leaf RL was estimated by using the Kok method, whereas leaf RD was measured as the rate of CO2 efflux at zero light. Leaf RL and RD were significantly higher at elevated than at ambient CO2 throughout the growing period. Elevated CO2 increased the ratio of leaf RL to net photosynthesis at saturated light (Amax) when plants were young and also after flowering, but the ratio of leaf RD to Amax was unaffected by CO2 levels. Leaf RN was significantly higher at the beginning but significantly lower at the end of the growing period in elevated CO2-grown plants. The ratio of leaf RL to RD was used to estimate the effect of light on leaf R during the day. We found that light inhibited leaf R at both CO2 concentrations but to a lesser degree for elevated (17–24%) than for ambient (29–35%) CO2-grown plants, presumably because elevated CO2-grown plants had a higher demand for energy and carbon skeletons than ambient CO2-grown plants in light. Our results suggest that using the CO2 efflux rate, determined by shading leaves during the day, as a measure for leaf R is likely to underestimate carbon loss from elevated CO2-grown plants.
Resumo:
Dendritic cells (DCs) play a central role in regulating immune activation and responses to self. DC maturation is central to the outcome of antigen presentation to T cells. Maturation of DCs is inhibited by physiological levels of 1α,25 dihydroxyvitamin D3 [1α,25(OH)2D3] and a related analog, 1α,25(OH)2-16-ene-23-yne-26,27-hexafluoro-19-nor-vitamin D3 (D3 analog). Conditioning of bone marrow cultures with 10−10 M D3 analog resulted in accumulation of immature DCs with reduced IL-12 secretion and without induction of transforming growth factor β1. These DCs retained an immature phenotype after withdrawal of D3 analog and exhibited blunted responses to maturing stimuli (CD40 ligation, macrophage products, or lipopolysaccharide). Resistance to maturation depended on the presence of the 1α,25(OH)2D3 receptor (VDR). In an in vivo model of DC-mediated antigen-specific sensitization, D3 analog-conditioned DCs failed to sensitize and, instead, promoted prolonged survival of subsequent skin grafts expressing the same antigen. To investigate the physiologic significance of 1α,25(OH)2D3/VDR-mediated modulation of DC maturity we analyzed DC populations from mice lacking VDR. Compared with wild-type animals, VDR-deficient mice had hypertrophy of subcutaneous lymph nodes and an increase in mature DCs in lymph nodes but not spleen. We conclude that 1α,25(OH)2D3/VDR mediates physiologically relevant inhibition of DC maturity that is resistant to maturational stimuli and modulates antigen-specific immune responses in vivo.