918 resultados para Grain-boundary Segregation
Resumo:
Composition of clay minerals in the <0.001 mm size fraction from the uppermost layer of bottom sediments in the northern Amur Bay was determined by X-ray powder diffraction analysis, and enrichment of 33 elements in the <0.001 mm and <0.01 mm size fractions of surface sediments from a number of sites at the marginal filter of the Razdol'naya River were studied by ICP-MS. Fe, U, and chalcophile elements occur in the highest concentrations in sediments from all sampling sites within the filter. The bottom sediments are not enriched in trace, alkali, and alkaline earth elements. Maximum concentrations of chemical elements were found in deposits from the brackish part of the marginal filter, perhaps, because of formation of Fe and Mn (Al) hydroxides. Bottom sediments at the boundary between the brackish and marine parts of the filter contain the lowest concentrations of the examined elements.
Resumo:
The mass-accumulation rate and grain size of the total eolian component of North Pacific pelagic clays at Deep Sea Drilling Project Sites 576 and 578 have been used to evaluate changes in eolian sedimentation and the intensity of atmospheric circulation that have occurred during the past 70 m.y. Eolian deposition, an indicator of source area aridity, was low in the Paleocene, Eocene, and Oligocene, apparently reflecting the humid environments of that time as well as the lack of glacial erosion products. A general increase in eoiian accumulation in the Miocene apparently reflects the relative increase in global aridity during the latter part of the Cenozoic. A dramatic increase in eolian accumulation rates in the Pliocene reflects the increased aridity and availability of glacial erosion products associated with Northern Hemisphere glaciation 2.5 m.y. ago. Eolian grain size, an indicator of wind intensity, suggests that Late Cretaceous wind strength was comparable to present-day wind strength. A sharp decrease in eolian grain size across the Paleocene/Eocene boundary is not readily interpreted, but may indicate a significant reduction in the intensity of atmospheric circulation at that time. Fine eolian grain size and low accumulation rates in the Eocene and early Oligocene are in agreement with low early Tertiary thermal gradients and less vigorous atmospheric circulation. Large increases in grain size during the Oligocene, mid-to-late Miocene, and Pliocene appear to be a response to steepening thermal gradients resulting from increasing polar isolation.
Resumo:
Carbon inoculation has no effect on magnesium alloys that do not contain aluminium. The hypothesis proposed in a recent article [Scripta Materialia 49 (2003) 1129] that segregation of carbon plays a major role in the grain refinement of magnesium alloys by carbon inoculation is inconsistent with many of the observed facts. The Al4C3 or Al-C-O hypothesis, which is supported by experimental observations, is still the most reasonable mechanism proposed to date for the grain refinement of magnesium alloys by carbon inoculation. (C) 2004 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
The microstructures and electrolytic properties of YxCe1-xO2-x/2 (x = 0.10-0.25) electrolytes with average grain size in the range 90 nm-1.7 mu m were systematically investigated. Through detailed transmission electron microscopy characterization, nanosized domains were observed. The relationship of the domains, the doping level and grain sizes were determined, and their impacts on the electrolytic properties were systematically studied. It was found that the formation of domains has a negative impact on the electrolytic properties, so that electrolytic properties can be adjusted through careful control of domain formation, doping level and grain size. (c) 2006 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
A sequence of constant-frequency tones can promote streaming in a subsequent sequence of alternating-frequency tones, but why this effect occurs is not fully understood and its time course has not been investigated. Experiment 1 used a 2.0-s-long constant-frequency inducer (10 repetitions of a low-frequency pure tone) to promote segregation in a subsequent, 1.2-s test sequence of alternating low- and high-frequency tones. Replacing the final inducer tone with silence substantially reduced reported test-sequence segregation. This reduction did not occur when either the 4th or 7th inducer was replaced with silence. This suggests that a change at the induction/test-sequence boundary actively resets build-up, rather than less segregation occurring simply because fewer inducer tones were presented. Furthermore, Experiment 2 found that a constant-frequency inducer produced its maximum segregation-promoting effect after only three tones—this contrasts with the more gradual build-up typically observed for alternating-frequency sequences. Experiment 3 required listeners to judge continuously the grouping of 20-s test sequences. Constant-frequency inducers were considerably more effective at promoting segregation than alternating ones; this difference persisted for ~10 s. In addition, resetting arising from a single deviant (longer tone) was associated only with constant-frequency inducers. Overall, the results suggest that constant-frequency inducers promote segregation by capturing one subset of test-sequence tones into an ongoing, preestablished stream, and that a deviant tone may reduce segregation by disrupting this capture. These findings offer new insight into the dynamics of stream segregation, and have implications for the neural basis of streaming and the role of attention in stream formation. (PsycINFO Database Record (c) 2013 APA, all rights reserved)
Resumo:
We have used a high-energy ball mill to prepare single-phased nanocrystalline Fe, Fe90Ni10, Fe85Al4Si11, Ni99Fe1 and Ni90Fe10 powders. We then increased their grain sizes by annealing. We found that a low-temperature anneal (T < 0.4 Tm) softens the elemental nanocrystalline Fe but hardens both the body-centered cubic iron- and face-centered cubic nickel-based solid solutions, leading in these alloys to an inverse Hall–Petch relationship. We explain this abnormal Hall–Petch effect in terms of solute segregation to the grain boundaries of the nanocrystalline alloys. Our analysis can also explain the inverse Hall–Petch relationship found in previous studies during the thermal anneal of ball-milled nanocrystalline Fe (containing ∼1.5 at.% impurities) and electrodeposited nanocrystalline Ni (containing ∼1.0 at.% impurities).
Resumo:
A sequence of constant-frequency tones can promote streaming in a subsequent sequence of alternating-frequency tones, but why this effect occurs is not fully understood and its time course has not been investigated. Experiment 1 used a 2.0-s-long constant-frequency inducer (10 repetitions of a low-frequency pure tone) to promote segregation in a subsequent, 1.2-s test sequence of alternating low- and high-frequency tones. Replacing the final inducer tone with silence substantially reduced reported test-sequence segregation. This reduction did not occur when either the 4th or 7th inducer was replaced with silence. This suggests that a change at the induction/test-sequence boundary actively resets build-up, rather than less segregation occurring simply because fewer inducer tones were presented. Furthermore, Experiment 2 found that a constant-frequency inducer produced its maximum segregation-promoting effect after only three tones—this contrasts with the more gradual build-up typically observed for alternating-frequency sequences. Experiment 3 required listeners to judge continuously the grouping of 20-s test sequences. Constant-frequency inducers were considerably more effective at promoting segregation than alternating ones; this difference persisted for ~10 s. In addition, resetting arising from a single deviant (longer tone) was associated only with constant-frequency inducers. Overall, the results suggest that constant-frequency inducers promote segregation by capturing one subset of test-sequence tones into an ongoing, preestablished stream, and that a deviant tone may reduce segregation by disrupting this capture. These findings offer new insight into the dynamics of stream segregation, and have implications for the neural basis of streaming and the role of attention in stream formation. (PsycINFO Database Record (c) 2013 APA, all rights reserved)
Resumo:
Three experiments investigated the dynamics of auditory stream segregation. Experiment 1 used a 2.0-s constant-frequency inducer (10 repetitions of a low-frequency pure tone) to promote segregation in a subsequent, 1.2-s test sequence of alternating low- and high-frequency tones. Replacing the final inducer tone with silence reduced reported test-sequence segregation substantially. This reduction did not occur when either the 4th or 7th inducer was replaced with silence. This suggests that a change at the induction/test-sequence boundary actively resets buildup, rather than less segregation occurring simply because fewer inducer tones were presented. Furthermore, Experiment 2 found that a constant-frequency inducer produced its maximum segregation-promoting effect after only 3 tone cycles - this contrasts with the more gradual build-up typically observed for alternating sequences. Experiment 3 required listeners to judge continuously the grouping of 20-s test sequences. Constant-frequency inducers were considerably more effective at promoting segregation than alternating ones; this difference persisted for ∼10 s. In addition, resetting arising from a single deviant (longer tone) was associated only with constant-frequency inducers. Overall, the results suggest that constant-frequency inducers promote segregation by capturing one subset of test-sequence tones into an on-going, pre-established stream and that a deviant tone may reduce segregation by disrupting this capture. © 2013 Acoustical Society of America.