997 resultados para Gold alloys
Resumo:
The addition of silicon to hydrogenated amorphous carbon can have the advantageous effect of lowering the compressive stress, improving the thermal stability of its hydrogen and maintaining a low friction coefficient up to high humidity. Most experiments to date have been on a-C1-xSix:H alloys deposited by RF plasma enhanced chemical vapour deposition (PECVD). This method gives alloys with considerable hydrogen content and only moderate hardness. Here, we use a high plasma density source, the electron cyclotron wave resonance (ECWR) source, to prepare films with a high deposition rate. The composition and bonding in the alloys is determined by XPS, visible and UV Raman and FTIR spectroscopy. We find that it is possible to produce hard, low stress, low friction, almost humidity insensitive a-C1-xSix:H alloys with a good optical transparency and a band gap over 2 eV.
Resumo:
The addition of silicon to hydrogenated amorphous carbon can have the advantageous effect of lowering the compressive stress, improving the thermal stability of its hydrogen, and maintaining a low friction coefficient up to high humidity. Most experiments to date have been on hydrogenated amorphous carbon-silicon alloys (a-C1-xSix:H) deposited by rf plasma enhanced chemical vapor deposition. This method gives alloys with sizeable hydrogen content and only moderate hardness. Here we use a high plasma density source known as the electron cyclotron wave resonance source to prepare films with higher sp3 content and lower hydrogen content. The composition and bonding in the alloys is determined by x-ray photoelectron spectroscopy, Rutherford backscattering, elastic recoil detection analysis, visible and ultraviolet (UV) Raman spectroscopy, infrared spectroscopy, and x-ray reflectivity. We find that it is possible to produce relatively hard, low stress, low friction, almost humidity insensitive a-C1-xSix:H alloys with a good optical transparency and a band gap well over 2.5 eV. The friction behavior and friction mechanism of these alloys are studied and compared with that of a-C:H, ta-C:H, and ta-C. We show how UV Raman spectroscopy allows the direct detection of Si-C, Si-Hx, and C-Hx vibrations, not seen in visible Raman spectra. © 2001 American Institute of Physics.
Resumo:
Simple process models are applied to predict microstructural changes due to the thermal cycle imposed in friction stir welding. A softening model developed for heat-treatable aluminium alloys of the 6000 series is applied to the aerospace alloy 2014 in the peak-aged (T6) condition. It is found that the model is not readily applicable to alloy 2024 in the naturally aged (T3) temper, but the softening behaviour can still be described semi-empirically. Both analytical and numerical (finite element) thermal models are used to predict the thermal histories in trial welds. These are coupled to the microstructural model to investigate: (a) the hardness profile across the welded plate; (b) alloy softening ahead of the approaching welding tool. By incorporating the softening model applied to 6082-T6 alloy, the hardness profile of friction stir welds in dissimilar alloys is also predicted. © AFM, EDP Sciences 2005.
Resumo:
In this paper we demonstrate how secondary ion mass spectrometry (SIMS) can be applied to ZnO nanowire structures for gold catalyst residue determination. Gold plays a significant role in determining the structural properties of such nanowires, with the location of the gold after growth being a strong indicator of the growth mechanism. For the material investigated here, we find that the gold remains at the substrate-nanowire interface. This was not anticipated as the usual growth mechanism associated with catalyst growth is of a vapour-liquid-solid (VLS) type. The results presented here favour a vapour-solid (VS) growth mechanism instead. Copyright © 2007 John Wiley & Sons, Ltd.
Resumo:
It becomes increasingly difficult to make continuous metal lines with well defined thickness and edges by the lift-off technique as the line width is decreased. We describe in this paper a technique in which the combination of high resolution electron beam lithography and ionized cluster beam (ICB) deposition has enabled very high quality gold lines ({all equal to}25nm wide) to be obtained on thick single crystal silicon substrates. © 1990.
Resumo:
This paper addresses the explosive consolidation of amorphous cobalt-based alloys. Using the experimental setup introduced in the present paper, specimens with high compact density, excellent magnetic properties and great wearability have been made. In comparison with permalloy and ferrite, the present specimens exhibit superior magnetic properties. Therefore, the compact is deemed as being a promising material for magnetic recording heads.
Resumo:
We present numerical simulations of thermosolutal convection for directional solidification of Al-3.5 wt% Ni and Al-7 wt% Si. Numerical results predict that fragmentation of dendrite arms resulting from dissolution could be favored in Al-7 wt% Si, but not in Al-3.5 wt% Ni. Corresponding experiments are in qualitative agreement with the numerical predictions. Distinguishing the two fragmentation mechanisms, namely dissolution and remelting, is critical during experiments on earth, when fluid flow is dominant. (C) 2007 COSPAR. Published by Elsevier Ltd. All rights reserved.
Resumo:
A constitutive model, based on an (n + 1)-phase mixture of the Mori-Tanaka average theory, has been developed for stress-induced martensitic transformation and reorientation in single crystalline shape memory alloys. Volume fractions of different martensite lattice correspondence variants are chosen as internal variables to describe microstructural evolution. Macroscopic Gibbs free energy for the phase transformation is derived with thermodynamics principles and the ensemble average method of micro-mechanics. The critical condition and the evolution equation are proposed for both the phase transition and reorientation. This model can also simulate interior hysteresis loops during loading/unloading by switching the critical driving forces when an opposite transition takes place.
Resumo:
Human serum albumin adsorption onto gold surfaces was investigated by electrochemical and ellipsometric methods. Albumin adsorption onto gold was confirmed by the change of the open circuit potential of gold and by the ellipsometric parameter variation during albumin immobilization. In both experiments the parameters reached stable values within 10-15 min. The albumin adsorption layer thickness measured with the ellipsometer was about 1.5 nm. The adsorption of albumin Under applied potential was also investigated and it was found that both positive and negative applied potential promote albumin adsorption. Changes in the optical parameters of bare gold and albumin adsorbed onto gold surface under applied potential were investigated with in Situ ellipsometry. The similarity and reversibility of the optical changes showed that adsorbed albumin was stable on the gold surface Under the applied potential range (-200-600 mV). The cyclic voltammograms of K3Fe(CN)(6) on the modified gold surface showed that albumin Could partly block the oxidation and reduction reaction. (C) 2004 Elsevier Inc. All rights reserved.