949 resultados para Global R
Resumo:
The global extent and distribution of forest trees is central to our understanding of the terrestrial biosphere. We provide the first spatially continuous map of forest tree density at a global scale. This map reveals that the global number of trees is approximately 3.04 trillion, an order of magnitude higher than the previous estimate. Of these trees, approximately 1.39 trillion exist in tropical and subtropical forests, with 0.74 trillion in boreal regions and 0.61 trillion in temperate regions. Biome-level trends in tree density demonstrate the importance of climate and topography in controlling local tree densities at finer scales, as well as the overwhelming effect of humans across most of the world. Based on our projected tree densities, we estimate that over 15 billion trees are cut down each year, and the global number of trees has fallen by approximately 46% since the start of human civilization.
Resumo:
Fire regimes have changed during the Holocene due to changes in climate, vegetation, and in human practices. Here, we hypothesise that changes in fire regime may have affected the global CO2 concentration in the atmosphere through the Holocene. Our data are based on quantitative reconstructions of biomass burning deduced from stratified charcoal records from Europe, and South-, Central- and North America, and Oceania to test the fire-carbon release hypothesis. In Europe the significant increase of fire activity is dated ≈6000 cal. yr ago. In north-eastern North America burning activity was greatest before 7500 years ago, very low between 7500–3000 years, and has been increasing since 3000 years ago. In tropical America, the pattern is more complex and apparently latitudinally zonal. Maximum burning occurred in the southern Amazon basin and in Central America during the middle Holocene, and during the last 2000 years in the northern Amazon basin. In Oceania, biomass burning has decreased since a maximum 5000 years ago. Biomass burning has broadly increased in the Northern and Southern hemispheres throughout the second half of the Holocene associated with changes in climate and human practices. Global fire indices parallel the increase of atmospheric CO2 concentration recorded in Antarctic ice cores. Future issues on carbon dynamics relatively to biomass burning are discussed to improve the quantitative reconstructions.
Resumo:
In order to explore the diversity and selective signatures of duplication and deletion human copy number variants (CNVs), we sequenced 236 individuals from 125 distinct human populations. We observed that duplications exhibit fundamentally different population genetic and selective signatures than deletions and are more likely to be stratified between human populations. Through reconstruction of the ancestral human genome, we identify megabases of DNA lost in different human lineages and pinpoint large duplications that introgressed from the extinct Denisova lineage now found at high frequency exclusively in Oceanic populations. We find that the proportion of CNV base pairs to single nucleotide variant base pairs is greater among non-Africans than it is among African populations, but we conclude that this difference is likely due to unique aspects of non-African population history as opposed to differences in CNV load.
Resumo:
BACKGROUND An increased body mass index (BMI) is associated with a high risk of cardiovascular disease and reduction in life expectancy. However, several studies reported improved clinical outcomes in obese patients treated for cardiovascular diseases. The aim of the present study is to investigate the impact of BMI on long-term clinical outcomes after implantation of zotarolimus eluting stents. METHODS Individual patient data were pooled from the RESOLUTE Clinical Program comprising five trials worldwide. The study population was sorted according to BMI tertiles and clinical outcomes were evaluated at 2-year follow-up. RESULTS Data from a total of 5,127 patients receiving the R-ZES were included in the present study. BMI tertiles were as follow: I tertile (≤ 25.95 kg/m(2) -Low or normal weight) 1,727 patients; II tertile (>25.95 ≤ 29.74 kg/m(2) -overweight) 1,695 patients, and III tertile (>29.74 kg/m(2) -obese) 1,705 patients. At 2-years follow-up no difference was found for patients with high BMI (III tertile) compared with patients with normal or low BMI (I tertile) in terms of target lesion failure (I-III tertile, HR [95% CI] = 0.89 [0.69, 1.14], P = 0.341; major adverse cardiac events (I-III tertile, HR [95% CI] = 0.90 [0.72, 1.14], P = 0.389; cardiac death (I-III tertile, HR [95% CI] = 1.20 [0.73, 1.99], P = 0.476); myocardial infarction (I-III tertile, HR [95% CI] = 0.86 [0.55, 1.35], P = 0.509; clinically-driven target lesion revascularization (I-III tertile, HR [95% CI] = 0.75 [0.53, 1.08], P = 0.123; definite or probable stent thrombosis (I-III tertile, HR [95% CI] = 0.98 [0.49, 1.99], P = 0.964. CONCLUSIONS In the present study, the patients' body mass index was found to have no impact on long-term clinical outcomes after coronary artery interventions.
Resumo:
We elaborate on a recent study of a model of supersymmetry breaking we proposed recently, in the presence of a tunable positive cosmological constant, based on a gauged shift symmetry of a string modulus, external to the Standard Model (SM) sector. Here, we identify this symmetry with a global symmetry of the SM and work out the corresponding phenomenology. A particularly attracting possibility is to use a combination of Baryon and Lepton number that contains the known matter parity and guarantees absence of dimension-four and -five operators that violate B and L.
Resumo:
Making healthcare comprehensive and more efficient remains a complex challenge. Health Information Technology (HIT) is recognized as an important component of this transformation but few studies describe HIT adoption and it's effect on the bedside experience by physicians, staff and patients. This study applied descriptive statistics and correlation analysis to data from the Patient-Centered Medical Home National Demonstration Project (NDP) of the American Academy of Family Physicians. Thirty-six clinics were followed for 26 months by clinician/staff questionnaires and patient surveys. This study characterizes those clinics as well as staff and patient perspectives on HIT usefulness, the doctor-patient relationship, electronic medical record (EMR) implementation, and computer connections in the practice throughout the study. The Global Practice Experience factor, a composite score related to key components of primary care, was then correlated to clinician and patient perspectives. This study found wide adoption of HIT among NDP practices. Patient perspectives on HIT helpfulness on the doctor-patient showed a suggestive trend that approached statistical significance (p = 0.172). Clinicians and staff noted successful integration of EMR into clinic workflow and their perception of helpfulness to the doctor-patient relationship show a suggestive increase also approaching statistical significance (p=0.06). GPE was correlated with clinician/staff assessment of a helpful doctor-patient relationship midway through the study (R 0.460, p = 0.021) with the remaining time points nearing statistical significance. GPE was also correlated to both patient perspectives of EMR helpfulness in the doctor-patient relationship (R 0.601, p = 0.001) and computer connections (R 0.618, p = 0.0001) at the start of the study. ^
Resumo:
Global and local climatic forcing, e.g. concentration of atmospheric CO2 or insolation, influence the distribution of C3 and C4 plants in southwest Africa. C4 plants dominate in more arid and warmer areas and are favoured by lower pCO2 levels. Several studies have assessed past and present continental vegetation by the analysis of terrestrial n-alkanes in near-coastal deep sea sediments using single samples or a small number of samples from a given climatic stage. The objectives of this study were to evaluate vegetation changes in southwest Africa with regard to climatic changes during the Late Pleistocene and the Holocene and to elucidate the potential of single sample simplifications. We analysed two sediment cores at high resolution, altogether ca. 240 samples, from the Southeast Atlantic Ocean (20°S and 12°S) covering the time spans of 18 to 1 ka and 56 to 2 ka, respectively. Our results for 20°S showed marginally decreasing C4 plant domination (of ca. 5%) during deglaciation based on average chain length (ACL27-33 values) and carbon isotopic composition of the C31 and C33 n-alkanes. Values for single samples from 18 ka and the Holocene overlap and, thus, are not significantly representative of the climatic stages they derive from. In contrast, at 12°S the n-alkane parameters show a clear difference of plant type for the Late Pleistocene (C4 plant domination, 66% C4 on average) and the Holocene (C3 plant domination, 40% C4 on average). During deglaciation vegetation change highly correlates with the increase in pCO2 (r² = 0.91). Short-term climatic events such as Heinrich Stadials or Antarctic warming periods are not reflected by vegetation changes in the catchment area. Instead, smaller vegetation fluctuations during the Late Pleistocene occur in accordance with local variations of insolation.