973 resultados para General Dynamics Corporation. Electric Boat Division.
Resumo:
Long-wave dynamics of the interannual variations of the equatorial Indian Ocean circulation are studied using an ocean general circulation model forced by the assimilated surface winds and heat flux of the European Centre for Medium-Range Weather Forecasts. The simulation has reproduced the sea level anomalies of the Ocean Topography Experiment (TOPEX)/Poseidon altimeter observations well. The equatorial Kelvin and Rossby waves decomposed from the model simulation show that western boundary reflections provide important negative feedbacks to the evolution of the upwelling currents off the Java coast during Indian Ocean dipole (IOD) events. Two downwelling Kelvin wave pulses are generated at the western boundary during IOD events: the first is reflected from the equatorial Rossby waves and the second from the off-equatorial Rossby waves in the southern Indian Ocean. The upwelling in the eastern basin during the 1997-98 IOD event is weakened by the first Kelvin wave pulse and terminated by the second. In comparison, the upwelling during the 1994 IOD event is terminated by the first Kelvin wave pulse because the southeasterly winds off the Java coast are weak at the end of 1994. The atmospheric intraseasonal forcing, which plays an important role in inducing Java upwelling during the early stage of an IOD event, is found to play a minor role in terminating the upwelling off the Java coast because the intraseasonal winds are either weak or absent during the IOD mature phase. The equatorial wave analyses suggest that the upwelling off the Java coast during IOD events is terminated primarily by western boundary reflections.
Resumo:
The dielectric response of graded composites having general power-law-graded cylindrical inclusions under a uniform applied electric field is investigated. The dielectric profile of the cylindrical inclusions is modeled by the equation epsilon(i)(r)=c(b+r)(k) (where r is the radius of the cylindrical inclusions and c, b and k are parameters). Analytical solutions for the local electrical potentials are derived in terms of hypergeometric functions and the effective dielectric response of the graded composites is predicted in the dilute limit. Moreover, for a simple power-law dielectric profile epsilon(i)(r) = cr(k) and a linear dielectric profile epsilon(i)(r) = c(b + r), analytical expressions of the electrical potentials and the effective dielectric response are derived exactly from our results by taking the limits b -> 0 and k -> 1, respectively. For a higher concentration of inclusions, the effective dielectric response is estimated by an effective-medium approximation. In addition, we have discussed the effective response of graded cylindrical composites with a more complex dielectric profile of inclusion, epsilon(i)(r)=c(b+r)(k)e(beta r). (c) 2005 American Institute of Physics.
Resumo:
The effective dielectric response of graded spherical composites having general power-law gradient inclusions is investigated under a uniform applied electric field, where the dielectric gradation profile of the spherical inclusions is modeled by the equation epsilon(i) (r) = c(b+r)(k). Analytical solutions of the local electrical potentials are derived in terms of hyper-geometric function and the effective dielectric response of the graded composites is predicted in the dilute limit. From our result, the local potentials of graded spherical composites having both simple power-law dielectric profile epsilon(i)(r) = cr(k) and linear dielectric profile epsilon(i) (r) = c(b+r) are derived exactly by taking the limits b --> 0 and k --> 1, respectively. In the dilute limit, our exact result is used to test the validity of differential effective dipole approximation (DEDA) for estimating the effective response of graded spherical composites, and it is shown that the DEDA is in excellent agreement with exact result. (C) 2005 Elsevier B.V. All rights reserved.
Resumo:
The perturbation method is developed to investigate the effective nonlinear dielectric response of Kerr composites when the external ac and dc electric field is applied. Under the external ac and dc electric field E-app=E-a(1+sin omegat), the effective coupling nonlinear response can be induced by the cubic nonlinearity of Kerr nonlinear materials at the zero frequency, the finite basic frequency omega, the second and the third harmonics, 2omega and 3omega, and so on. As an example, we have investigated the cylindrical inclusions randomly embedded in a host and derived the formulas of the effective nonlinear dielectric response at harmonics in dilute limit. For a higher concentration of inclusions, we have proposed a nonlinear effective-medium approximation by introducing the general effective nonlinear response. With the relationships between the effective nonlinear response at harmonics and the general effective nonlinear response, we have derived a set of formulas of the effective nonlinear dielectric responses at harmonics for a larger volume fraction. (C) 2004 American Institute of Physics.
Resumo:
The fifth-order effective nonlinear responses at fundament frequency and higher-order harmonics are given for nonlinear composites, which obey a current-field relation of the form J = sigmaE + x\E\(2) E, if a sinusoidal alternating current (AC) external field with finite frequency omega is applied. As two examples, we have investigated the cylinder and spherical inclusion embedded in a host and, for larger volume fraction, also derived the formulae of effective nonlinear responses at higher-order harmonics by the aid of the general effective response definition. Furthermore, the relationships between effective nonlinear responses at harmonics are given. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
A general effective response is proposed for nonlinear composite media, which obey a current field relation of the form J = sigmaE + chi\E\(2) E when an external alternating current (AC) electrical field is applied. For a sinusoidal applied field with finite frequency omega, the effective constitutive relation between the current density and electric field can be defined as,
Resumo:
In this paper, we viewed the diel vertical migration (DVM) of copepod in the context of the animal's immediate behaviors of everyday concerns and constructed an instantaneous behavioral criterion effective for DVM and non-DVM behaviors. This criterion employed the function of 'venturous revenue' (VR), which is the product of the food intake and probability of the survival, to evaluate the gains and losses of the behaviors that the copepod could trade-off. The optimal behaviors are to find the optimal habitats to maximize VR. Two types of VRs are formulated and tested by the theoretical analysis and simulations. The sensed VR, monitoring the real-time changes of trade-offs and thereby determining the optimum habitat, is validated to be the effective objective function for the optimization of the behavior; whereas, the realized VR, quantifying the actual profit obtained by an optimal copepod in the sensed-VR-determined habitat, defines the life history of a specific age cohort. The achievement of a robust copepod overwintering stock through integrating the dynamics of the constituent age cohorts subjected to the instantaneous behavioral criterion for DVM clearly exemplified a possible way bridging the immediate pursuit of an individual and the end success of the population. (c) 2005 Published by Elsevier Ltd.
Resumo:
In the engineering reinforcement of-rock and soil mass, engineers must consider how to obtain better reinforcing effect at the cost of less reinforcing expense, which, in fact, is the aim of reinforcement design. In order to accomplish the purpose, they require not only researching the material used to reinforce and its structure, but also taking into account of several important geological factors, such as the structure and property of rock and soil mass. How to improve the reinforcing effect according to engineering geomechanical principle at the respect of the reinforcement of engineering soil and rock mass is studied and discussed in this paper. The author studies the theory, technology and practice of geotechnical reinforcement based on engineering geomechanics, taking example for the soil treatment of Zhengzhou Airport, the effect analysis of reinforcement to the slope on the left bank of Wuqiangxi Hydropower Station and the reinforcing design of the No. 102 Landslide and unique sand-slide slope on the Sichuan-Tibet Highway. The paper is comprised of two parts for the convenience of discussion. In the first part, from the first chapter to the fifth chapter, trying to perform the relevant research and application at the viewpoint of soil mass engineering geomechanics, the author mainly discusses the study of reinforcing soft ground soil through dynamical consolidation and its application. Then, in the second part, from the sixth chapter to the eleventh chapter, the study of new technologies in the rock slope reinforcement and their application are discussed. The author finds that not only better reinforcing effect can be gained in the research where the principle and method of rock mass engineering geomechanics is adopted, but also new reinforcing technologies can be put forward. Zhengzhou Airport is an important one in central plains. It lies on Yellow River alluvial deposit and the structure of stratum is complex and heterogeneous. The area of airport is very large, which can result in differential settlement easily, damage of airport and aircraft accident, whereas, there are no similar experiences to dispose the foundation, so the foundation treatment become a principal problem. During the process of treatment, the method of dynamic compaction was adopted after compared with other methods using the theory of synthetic integration. Dynamic compaction is an important method to consolidate foundation, which was successfully used in the foundation of Zhengzhou Airport. For fill foundation, controlling the thickness of fill so as to make the foundation treatment can reach the design demand and optimum thickness of the fill is a difficult problem. Considering this problem, the author proposed a calculation method to evaluate the thickness of fill. The method can consider not only the self-settlement of fill but also the settlement of the ground surface under applied load so as to ensure the settlement occurred during the using period can satisfy the design demand. It is proved that the method is correct after using it to choose reasonable energy of dynamic compaction to treat foundation. At the same time, in order to examine the effect of dynamic compaction, many monitor methods were adopted in the test such as static loading test, modulus of resilience test, deep pore pressure -test, static cone penetration test and the variation of the pore volume measurement. Through the tests, the author summarized the discipline of the accumulation and dissipation of pore pressure in Yellow River alluvial deposit under the action of dynamic compaction, gave a correct division of the property change of silt and clay under dynamic compaction, determined the bearing capacity of foundation after treatment and weighted the reinforcing effect of dynamic consolidation from the variation of the soil particle in microcosmic and the parameter of soil mass' density. It can be considered that the compactness of soil is in proportion to the energy of dynamic compaction. This conclusion provided a reference to the research of the "Problem of Soil Structure-the Central Problem of Soil Mechanics in 21 Century ". It is also important to strengthen rock mass for water conservancy and electric power engineering. Slip-resistance pile and anchoring adit full of reinforced concrete are usually adopted in engineering experience to strengthen rock mass and very important for engineering. But there also some deficiency such as the weakest section can't be highlighted, the monitor is inconvenient and the diameter of pile and adit is very large etc. The author and his supervisor professor Yangzhifa invented prestressed slip-resistance pile and prestressed anchoring adit full of reinforced concrete, utilizing the advantage that the prestressed structure has better anti-tensile characteristic (this invention is to be published). These inventions overcome the disadvantages of general slip-resistance pile and anchoring adit full of reinforced concrete and have the functions of engineering prospecting, strengthening, drainage and monitor simultaneous, so they have better strengthened effect and be more convenient for monitor and more economical than traditional methods. Drainage is an important factor in treatments of rock mass and slop. In view of the traditional drainage method that drainage pore often be clogged so as to resulted in incident, professor Yangzhifa invented the method and setting of guide penetration by fiber bundle. It would take good effect to use it in prestressed slip-resistance pile and anchoring adit full of reinforced concrete. In this paper, the author took example for anchoring adit full of reinforced concrete used to strengthen Wuqiangxi left bank to simulate the strengthened effect after consolidated by prestressed slip-resistance pile, took example for 102 landslide occurred along Sichuan-Tibet highway to simulate the application of slip-resistance pile and the new technology of drainage. At the same time the author proposed the treatment method of flowing sand in Sichuan-Tibet highway, which will benefit the study on strengthening similar engineering. There are five novelties in the paper with the author's theoretical study and engineering practice: 1. Summarizing the role of pore water pressure accumulation and dissipation of the Yellow River alluvial and diluvial soil under the action of dynamical consolidation, which has instructive significance in the engineering construction under the analogical engineering geological conditions in the future. It has not been researched by the predecessors. 2. Putting forward the concept of density D in microcosmic based on the microcosmical structure study of the soil sample. Adopting D to weight the reinforcing effect of dynamic consolidation is considered to be appropriate by the means of comparing the D values of Zhengzhou Airport's ground soil before with after dynamically consolidating reinforcement, so a more convenient balancing method can be provided for engineering practice. 3. According to the deep research into the soil mass engineering geology, engineering rock and soil science, soil mechanics, as well as considerable field experiments, improving the consolidating method in airport construction, from the conventional method, which is dynamically compactmg original ground surface firstly, then filling soil and dynamically layer-consolidating or layer-compacting at last to the upgraded method, which is performing dynamical consolidation after filling soil to place totally at the extent of the certain earth-filling depth. The result of the dynamical consolidation not only complies with the specifications, but also reduces the soil treatment investment by 10 million RMB. 4. Proposing the method for calculating the height of the filled soil by the means of estimating the potential displacement produced in the original ground surface and the filled earth soil under the possible load, selecting the appropriate dynamically-compacting power and determining the virtual height of the filled earth soil. The method is proved to be effective and scientific. 5. According to the thought of Engineering Geomechanics Metal-Synthetic Methodology (EGMS), patenting two inventions (to the stage of roclamation, with Professor Yang Zhi-fa, the cooperative tutor, and etc.) in which multi-functions, engineering geological investigation, reinforcement, drainage and strength remedy, are integrated all over in one body at the viewpoint of the breakage mechanism of the rock slope.
Resumo:
How does the brain make decisions? Speed and accuracy of perceptual decisions covary with certainty in the input, and correlate with the rate of evidence accumulation in parietal and frontal cortical "decision neurons." A biophysically realistic model of interactions within and between Retina/LGN and cortical areas V1, MT, MST, and LIP, gated by basal ganglia, simulates dynamic properties of decision-making in response to ambiguous visual motion stimuli used by Newsome, Shadlen, and colleagues in their neurophysiological experiments. The model clarifies how brain circuits that solve the aperture problem interact with a recurrent competitive network with self-normalizing choice properties to carry out probablistic decisions in real time. Some scientists claim that perception and decision-making can be described using Bayesian inference or related general statistical ideas, that estimate the optimal interpretation of the stimulus given priors and likelihoods. However, such concepts do not propose the neocortical mechanisms that enable perception, and make decisions. The present model explains behavioral and neurophysiological decision-making data without an appeal to Bayesian concepts and, unlike other existing models of these data, generates perceptual representations and choice dynamics in response to the experimental visual stimuli. Quantitative model simulations include the time course of LIP neuronal dynamics, as well as behavioral accuracy and reaction time properties, during both correct and error trials at different levels of input ambiguity in both fixed duration and reaction time tasks. Model MT/MST interactions compute the global direction of random dot motion stimuli, while model LIP computes the stochastic perceptual decision that leads to a saccadic eye movement.
Resumo:
In this paper, two methods for constructing systems of ordinary differential equations realizing any fixed finite set of equilibria in any fixed finite dimension are introduced; no spurious equilibria are possible for either method. By using the first method, one can construct a system with the fewest number of equilibria, given a fixed set of attractors. Using a strict Lyapunov function for each of these differential equations, a large class of systems with the same set of equilibria is constructed. A method of fitting these nonlinear systems to trajectories is proposed. In addition, a general method which will produce an arbitrary number of periodic orbits of shapes of arbitrary complexity is also discussed. A more general second method is given to construct a differential equation which converges to a fixed given finite set of equilibria. This technique is much more general in that it allows this set of equilibria to have any of a large class of indices which are consistent with the Morse Inequalities. It is clear that this class is not universal, because there is a large class of additional vector fields with convergent dynamics which cannot be constructed by the above method. The easiest way to see this is to enumerate the set of Morse indices which can be obtained by the above method and compare this class with the class of Morse indices of arbitrary differential equations with convergent dynamics. The former set of indices are a proper subclass of the latter, therefore, the above construction cannot be universal. In general, it is a difficult open problem to construct a specific example of a differential equation with a given fixed set of equilibria, permissible Morse indices, and permissible connections between stable and unstable manifolds. A strict Lyapunov function is given for this second case as well. This strict Lyapunov function as above enables construction of a large class of examples consistent with these more complicated dynamics and indices. The determination of all the basins of attraction in the general case for these systems is also difficult and open.
Resumo:
In this thesis a novel transmission format, named Coherent Wavelength Division Multiplexing (CoWDM) for use in high information spectral density optical communication networks is proposed and studied. In chapter I a historical view of fibre optic communication systems as well as an overview of state of the art technology is presented to provide an introduction to the subject area. We see that, in general the aim of modern optical communication system designers is to provide high bandwidth services while reducing the overall cost per transmitted bit of information. In the remainder of the thesis a range of investigations, both of a theoretical and experimental nature are carried out using the CoWDM transmission format. These investigations are designed to consider features of CoWDM such as its dispersion tolerance, compatibility with forward error correction and suitability for use in currently installed long haul networks amongst others. A high bit rate optical test bed constructed at the Tyndall National Institute facilitated most of the experimental work outlined in this thesis and a collaboration with France Telecom enabled long haul transmission experiments using the CoWDM format to be carried out. An amount of research was also carried out on ancillary topics such as optical comb generation, forward error correction and phase stabilisation techniques. The aim of these investigations is to verify the suitability of CoWDM as a cost effective solution for use in both current and future high bit rate optical communication networks
Resumo:
It is increasingly evident that evolutionary processes play a role in how ecological communities are assembled. However the extend to which evolution influences how plants respond to spatial and environmental gradients and interact with each other is less clear. In this dissertation I leverage evolutionary tools and thinking to understand how space and environment affect community composition and patterns of gene flow in a unique system of Atlantic rainforest and restinga (sandy coastal plains) habitats in Southeastern Brazil.
In chapter one I investigate how space and environment affect the population genetic structure and gene flow of Aechmea nudicaulis, a bromeliad species that co-occurs in forest and restinga habitats. I genotyped seven microsatellite loci and sequenced one chloroplast DNA region for individuals collected in 7 pairs of forest / restinga sites. Bayesian genetic clustering analyses show that populations of A. nudicaulis are geographically structured in northern and southern populations, a pattern consistent with broader scale phylogeographic dynamics of the Atlantic rainforest. On the other hand, explicit migration models based on the coalescent estimate that inter-habitat gene flow is less common than gene flow between populations in the same habitat type, despite their geographic discontinuity. I conclude that there is evidence for repeated colonization of the restingas from forest populations even though the steep environmental gradient between habitats is a stronger barrier to gene flow than geographic distance.
In chapter two I use data on 2800 individual plants finely mapped in a restinga plot and on first-year survival of 500 seedlings to understand the roles of phylogeny, functional traits and abiotic conditions in the spatial structuring of that community. I demonstrate that phylogeny is a poor predictor of functional traits in and that convergence in these traits is pervasive. In general, the community is not phylogenetically structured, with at best 14% of the plots deviating significantly from the null model. The functional traits SLA, leaf dry matter content (LDMC), and maximum height also showed no clear pattern of spatial structuring. On the other hand, leaf area is strongly overdispersed across all spatial scales. Although leaf area overdispersion would be generally taken as evidence of competition, I argue that interpretation is probably misleading. Finally, I show that seedling survival is dramatically increased when they grow shaded by an adult individual, suggesting that seedlings are being facilitated. Phylogenetic distance to their adult neighbor has no influence on rates of survival though. Taken together, these results indicate that phylogeny has very limited influence on the fine scale assembly of restinga communities.
Resumo:
In this dissertation, we explore the use of pursuit interactions as a building block for collective behavior, primarily in the context of constant bearing (CB) cyclic pursuit. Pursuit phenomena are observed throughout the natural environment and also play an important role in technological contexts, such as missile-aircraft encounters and interactions between unmanned vehicles. While pursuit is typically regarded as adversarial, we demonstrate that pursuit interactions within a cyclic pursuit framework give rise to seemingly coordinated group maneuvers. We model a system of agents (e.g. birds, vehicles) as particles tracing out curves in the plane, and illustrate reduction to the shape space of relative positions and velocities. Introducing the CB pursuit strategy and associated pursuit law, we consider the case for which agent i pursues agent i+1 (modulo n) with the CB pursuit law. After deriving closed-loop cyclic pursuit dynamics, we demonstrate asymptotic convergence to an invariant submanifold (corresponding to each agent attaining the CB pursuit strategy), and proceed by analysis of the reduced dynamics restricted to the submanifold. For the general setting, we derive existence conditions for relative equilibria (circling and rectilinear) as well as for system trajectories which preserve the shape of the collective (up to similarity), which we refer to as pure shape equilibria. For two illustrative low-dimensional cases, we provide a more comprehensive analysis, deriving explicit trajectory solutions for the two-particle "mutual pursuit" case, and detailing the stability properties of three-particle relative equilibria and pure shape equilibria. For the three-particle case, we show that a particular choice of CB pursuit parameters gives rise to remarkable almost-periodic trajectories in the physical space. We also extend our study to consider CB pursuit in three dimensions, deriving a feedback law for executing the CB pursuit strategy, and providing a detailed analysis of the two-particle mutual pursuit case. We complete the work by considering evasive strategies to counter the motion camouflage (MC) pursuit law. After demonstrating that a stochastically steering evader is unable to thwart the MC pursuit strategy, we propose a (deterministic) feedback law for the evader and demonstrate the existence of circling equilibria for the closed-loop pursuer-evader dynamics.
Resumo:
Molecular dynamics has been employed to model the fracture of a twodimensional triangular atomic lattice. The N-body Sutton-Chen potential developed for fcc metals and its extended version (Rafii-Tabar and Sutton) for fcc random binary alloys were used for the interatomic interactions. It is shown that at low temperatures cleavage fractures can occur in both an elemental metal and an alloy. At elevated temperatures the nucleation of dislocations is shown to cause a brittle-to-ductile transition. For the brittle crack propagation in the elemental metal, crack propagation speeds have been computed for different stress rates, and a crack instability found to exist as the speed reaches a critical value of about 32% of the Rayleigh wave speed. For the random alloy, we find that the dislocation movement can be affected by the distorted lattice.
Resumo:
SMARTFIRE, an open architecture integrated CFD code and knowledge based system attempts to make fire field modeling accessible to non-experts in Computational Fluid Dynamics (CFD) such as fire fighters, architects and fire safety engineers. This is achieved by embedding expert knowledge into CFD software. This enables the 'black-art' associated with the CFD analysis such as selection of solvers, relaxation parameters, convergence criteria, time steps, grid and boundary condition specification to be guided by expert advice from the software. The user is however given the option of overriding these decisions, thus retaining ultimate control. SMARTFIRE also makes use of recent developments in CFD technology such as unstructured meshes and group solvers in order to make the CFD analysis more efficient. This paper describes the incorporation within SMARTFIRE of the expert fire modeling knowledge required for automatic problem setup and mesh generation as well as the concept and use of group solvers for automatic and manual dynamic control of the CFD code.