996 resultados para Gas companies.
Resumo:
Tutkimuksen tavoitteena oli selvittää miten hajautettu energiantuotanto ja siihen liittyvä liiketoiminta tulee muuttumaan tulevaisuudessaja mitä mahdollisuuksia se voisi tarjota suomalaiselle osaamiselle. Työssä käydään läpi lyhyesti hajautetun energiantuotannon teknologian nykytilaa ja tehdään teknis-taloudellista vertailua eri tuotantoteknologioiden välillä. Tämän jälkeenon muodostettu asiantuntijoiden ja aktoreiden kanssa liiketoimin-taympäristöskenaarioita, jotka kuvaavat tulevaisuuden muutossuuntia hajautetun energian-tuotannon liiketoiminnassa. Skenaarioistunnoissa löydettiin muutosta ajavat voimat ja pohdittiin niiden vaikutusta alan kehitykseen. Työn tuloksena määriteltiin skenaarioiden kehitystä vahvimmin ohjaaviksi tekijöiksi infrastruktuurin kehittyneisyys ja toisaalta myös yhteiskunnan ohjaustoimet. Niiden pohjalta luotiin lopulliset neljä skenaariota ja niille kaikille liiketoimintakuvaukset. Skenaarioiden avulla suomalaisen toimijan näkökulmasta arvioitiin houkuttelevimmiksi markkina-alueiksi EU-15, Venäjä, Intia ja Kiina. Moninaisista liiketoimintaa estävistä te-kijöistä huolimatta markkinoilta löytyi suuri potentiaali hajautetun energiantuotannon jär-jestelmille. Potentiaalisimmiksi teknologioiksi suomalaisten yritysten kannalta nähtiin puolestaan diesel- ja kaasumoottorit, tuulivoima, pienvesivoima sekä bioenergia. Yhdessä markkina- ja teknologiatutkimuksien sekä skenaariotyön avulla luotiin uusia liiketoimin-takonseptikuvauksia tulevaisuuden hajautetun energiantuotannon markkinoille suomalai-sen toimijan näkökulmasta.
Resumo:
There are several alternatives for valuing the future opportunities of firms. The traditional appraisal methods for single projects such as net present value, internalrate of return and payback rules have been criticized in recent years. It has been said that they do not take into account all growth opportunities of firms. At the company level, business valuation is traditionally based on financial and market information. Yield estimates, net worth values and market values of shares are commonly used. Naturally, all valuation methods have their own strengths and shortcomings. In the background of most estimation rules there is the idea that the future of the firms is quite clear and predictable. However, in recent times the business environment of most companies has changed to a more unpredictable direction and the effects of uncertainty have increased. There has been a growing interest in estimating the risks and values of future possibilities. The aim of the current paper is to describe the difference between the value of futureopportunities in information technology firms and forest companies, and also toanalyse the backgrounds for the observed gap.
Resumo:
Tutkimus suomalaisten yritysten liiketoimintamahdollisuuksista hiilidoksidipäästöjen vähentämisen parissa Luoteis-Venäjällä.
Resumo:
Small centrifugal compressors are more and more widely used in many industrialsystems because of their higher efficiency and better off-design performance comparing to piston and scroll compressors as while as higher work coefficient perstage than in axial compressors. Higher efficiency is always the aim of the designer of compressors. In the present work, the influence of four partsof a small centrifugal compressor that compresses heavy molecular weight real gas has been investigated in order to achieve higher efficiency. Two parts concern the impeller: tip clearance and the circumferential position of the splitter blade. The other two parts concern the diffuser: the pinch shape and vane shape. Computational fluid dynamics is applied in this study. The Reynolds averaged Navier-Stokes flow solver Finflo is used. The quasi-steady approach is utilized. Chien's k-e turbulence model is used to model the turbulence. A new practical real gas model is presented in this study. The real gas model is easily generated, accuracy controllable and fairly fast. The numerical results and measurements show good agreement. The influence of tip clearance on the performance of a small compressor is obvious. The pressure ratio and efficiency are decreased as the size of tip clearance is increased, while the total enthalpy rise keeps almost constant. The decrement of the pressure ratio and efficiency is larger at higher mass flow rates and smaller at lower mass flow rates. The flow angles at the inlet and outlet of the impeller are increased as the size of tip clearance is increased. The results of the detailed flow field show that leakingflow is the main reason for the performance drop. The secondary flow region becomes larger as the size of tip clearance is increased and the area of the main flow is compressed. The flow uniformity is then decreased. A detailed study shows that the leaking flow rate is higher near the exit of the impeller than that near the inlet of the impeller. Based on this phenomenon, a new partiallyshrouded impeller is used. The impeller is shrouded near the exit of the impeller. The results show that the flow field near the exit of the impeller is greatly changed by the partially shrouded impeller, and better performance is achievedthan with the unshrouded impeller. The loading distribution on the impeller blade and the flow fields in the impeller is changed by moving the splitter of the impeller in circumferential direction. Moving the splitter slightly to the suction side of the long blade can improve the performance of the compressor. The total enthalpy rise is reduced if only the leading edge of the splitter ismoved to the suction side of the long blade. The performance of the compressor is decreased if the blade is bended from the radius direction at the leading edge of the splitter. The total pressure rise and the enthalpy rise of thecompressor are increased if pinch is used at the diffuser inlet. Among the fivedifferent pinch shape configurations, at design and lower mass flow rates the efficiency of a straight line pinch is the highest, while at higher mass flow rate, the efficiency of a concave pinch is the highest. The sharp corner of the pinch is the main reason for the decrease of efficiency and should be avoided. The variation of the flow angles entering the diffuser in spanwise direction is decreased if pinch is applied. A three-dimensional low solidity twisted vaned diffuser is designed to match the flow angles entering the diffuser. The numerical results show that the pressure recovery in the twisted diffuser is higher than in a conventional low solidity vaned diffuser, which also leads to higher efficiency of the twisted diffuser. Investigation of the detailed flow fields shows that the separation at lower mass flow rate in the twisted diffuser is later than in the conventional low solidity vaned diffuser, which leads to a possible wider flow range of the twisted diffuser.
Resumo:
This work deals with the cooling of high-speed electric machines, such as motors and generators, through an air gap. It consists of numerical and experimental modelling of gas flow and heat transfer in an annular channel. Velocity and temperature profiles are modelled in the air gap of a high-speed testmachine. Local and mean heat transfer coefficients and total friction coefficients are attained for a smooth rotor-stator combination at a large velocity range. The aim is to solve the heat transfer numerically and experimentally. The FINFLO software, developed at Helsinki University of Technology, has been used in the flow solution, and the commercial IGG and Field view programs for the grid generation and post processing. The annular channel is discretized as a sector mesh. Calculation is performed with constant mass flow rate on six rotational speeds. The effect of turbulence is calculated using three turbulence models. The friction coefficient and velocity factor are attained via total friction power. The first part of experimental section consists of finding the proper sensors and calibrating them in a straight pipe. After preliminary tests, a RdF-sensor is glued on the walls of stator and rotor surfaces. Telemetry is needed to be able to measure the heat transfer coefficients at the rotor. The mean heat transfer coefficients are measured in a test machine on four cooling air mass flow rates at a wide Couette Reynolds number range. The calculated values concerning the friction and heat transfer coefficients are compared with measured and semi-empirical data. Heat is transferred from the hotter stator and rotor surfaces to the coolerair flow in the air gap, not from the rotor to the stator via the air gap, althought the stator temperature is lower than the rotor temperature. The calculatedfriction coefficients fits well with the semi-empirical equations and precedingmeasurements. On constant mass flow rate the rotor heat transfer coefficient attains a saturation point at a higher rotational speed, while the heat transfer coefficient of the stator grows uniformly. The magnitudes of the heat transfer coefficients are almost constant with different turbulence models. The calibrationof sensors in a straight pipe is only an advisory step in the selection process. Telemetry is tested in the pipe conditions and compared to the same measurements with a plain sensor. The magnitudes of the measured data and the data from the semi-empirical equation are higher for the heat transfer coefficients than thenumerical data considered on the velocity range. Friction and heat transfer coefficients are presented in a large velocity range in the report. The goals are reached acceptably using numerical and experimental research. The next challenge is to achieve results for grooved stator-rotor combinations. The work contains also results for an air gap with a grooved stator with 36 slots. The velocity field by the numerical method does not match in every respect the estimated flow mode. The absence of secondary Taylor vortices is evident when using time averagednumerical simulation.
Resumo:
Thisresearch deals with the dynamic modeling of gas lubricated tilting pad journal bearings provided with spring supported pads, including experimental verification of the computation. On the basis of a mathematical model of a film bearing, a computer program has been developed, which can be used for the simulation of a special type of tilting pad gas journal bearing supported by a rotary spring under different loading conditions time dependently (transient running conditions due to geometry variations in time externally imposed). On the basis of literature, different transformations have been used in the model to achieve simpler calculation. The numerical simulation is used to solve a non-stationary case of a gasfilm. The simulation results were compared with literature results in a stationary case (steady running conditions) and they were found to be equal. In addition to this, comparisons were made with a number of stationary and non-stationary bearing tests, which were performed at Lappeenranta University of Technology using bearings designed with the simulation program. A study was also made using numerical simulation and literature to establish the influence of the different bearing parameters on the stability of the bearing. Comparison work was done with literature on tilting pad gas bearings. This bearing type is rarely used. One literature reference has studied the same bearing type as that used in LUT. A new design of tilting pad gas bearing is introduced. It is based on a stainless steel body and electron beam welding of the bearing parts. It has good operation characteristics and is easier to tune and faster to manufacture than traditional constructions. It is also suitable for large serial production.
Resumo:
Gas-liquid mass transfer is an important issue in the design and operation of many chemical unit operations. Despite its importance, the evaluation of gas-liquid mass transfer is not straightforward due to the complex nature of the phenomena involved. In this thesis gas-liquid mass transfer was evaluated in three different gas-liquid reactors in a traditional way by measuring the volumetric mass transfer coefficient (kLa). The studied reactors were a bubble column with a T-junction two-phase nozzle for gas dispersion, an industrial scale bubble column reactor for the oxidation of tetrahydroanthrahydroquinone and a concurrent downflow structured bed.The main drawback of this approach is that the obtained correlations give only the average volumetric mass transfer coefficient, which is dependent on average conditions. Moreover, the obtained correlations are valid only for the studied geometry and for the chemical system used in the measurements. In principle, a more fundamental approach is to estimate the interfacial area available for mass transfer from bubble size distributions obtained by solution of population balance equations. This approach has been used in this thesis by developing a population balance model for a bubble column together with phenomenological models for bubble breakage and coalescence. The parameters of the bubble breakage rate and coalescence rate models were estimated by comparing the measured and calculated bubble sizes. The coalescence models always have at least one experimental parameter. This is because the bubble coalescence depends on liquid composition in a way which is difficult to evaluate using known physical properties. The coalescence properties of some model solutions were evaluated by measuring the time that a bubble rests at the free liquid-gas interface before coalescing (the so-calledpersistence time or rest time). The measured persistence times range from 10 msup to 15 s depending on the solution. The coalescence was never found to be instantaneous. The bubble oscillates up and down at the interface at least a coupleof times before coalescence takes place. The measured persistence times were compared to coalescence times obtained by parameter fitting using measured bubble size distributions in a bubble column and a bubble column population balance model. For short persistence times, the persistence and coalescence times are in good agreement. For longer persistence times, however, the persistence times are at least an order of magnitude longer than the corresponding coalescence times from parameter fitting. This discrepancy may be attributed to the uncertainties concerning the estimation of energy dissipation rates, collision rates and mechanisms and contact times of the bubbles.
Resumo:
Values and value processes are said to be needed in every organization nowadays, as the world is changing and companies have to have something to "keep it together". Organizational values, which are approvedand used by the personnel, could be the key. Every organization has values. But what is the real value of values? The greatest and most crucial challenge is the feasibility of the value process. The main point in this thesis is tostudy how organizational members at different hierarchical levels perceive values and value processes in their organizations. This includes themes such as how values are disseminated, the targets of value processing, factors that affect the process, problems that occur during the value implementation and improvements that could be made when organizational values are implemented. These subjects are studied from the perspective of organizational members (both managers and employees); individuals in the organizations. The aim is to get the insider-perspective on value processing, from multiple hierarchical levels. In this research I study three different organizations (forest industry, bank and retail cooperative) and their value processes. The data is gathered from companies interviewing personnel in the head office and at the local level. The individuals areseen as members of organizations, and the cultural aspect is topical throughout the whole study. Values and cultures are seen as the 'actuality of reality' of organizations, interpreted by organizational members. The three case companies were chosen because they represented different lines of business and they all implemented value processing differently. Sincethe emphasis in this study is at the local level, the similar size of the local units was also an important factor. Values are in 'fashion' -but what does the fashion tell us about the real corporate practices? In annual reports companies emphasize the importance and power of official values. But what is the real 'point' of values? Values are publicly respected and advertised, but still it seems that the words do not meet the deeds. There is a clear conflict between theoretical, official and substantive organizational values: in the value processing from words to real action. This contradiction in value processing is studied through individual perceptions in this study. I study the kinds of perceptions organizationalmembers have when values are processed from the head office to the local level: the official value process is studied from the individual's perspective. Value management has been studied more during the 1990's. The emphasis has usually been on managers: how they consider the values in organizations and what effects it has on the management. Recent literature has emphasized values as tools for improving company performance. The value implementation as a process has been studied through 'good' and 'bad' examples, as if one successful value process could be copied to all organizations. Each company is different with different cultures and personnel, so no all-powerful way of processing values exists. In this study, the organizational members' perceptions at different hierarchical levels are emphasized. Still, managers are also interviewed; this is done since managerial roles in value dissemination are crucial. Organizational values cannot be well disseminated without management; this has been proved in several earlier studies (e.g. Kunda 1992, Martin 1992, Parker 2000). Recent literature has not sufficiently emphasized the individual's (organizational member's) role in value processing. Organizations consist of differentindividuals with personal values, at all hierarchical levels. The aim in this study is to let the individual take the floor. Very often the value process is described starting from the value definition and ending at dissemination, and the real results are left without attention. I wish to contribute to this area. Values are published officially in annual reports etc. as a 'goal' just like profits. Still, the results/implementationof value processing is rarely followed, at least in official reports. This is a very interesting point: why do companies espouse values, if there is no real control or feedback after the processing? In this study, the personnel in three different companies is asked to give an answer. In the empirical findings, there are several results which bring new aspects to the research area of organizational values. The targets of value processing, factors effecting value processing, the management's roles and the problems in value implementation are presented through the individual's perspective. The individual's perceptions in value processing are a recurring theme throughout the whole study. A comparison between the three companies with diverse value processes makes the research complete
Resumo:
A study was carried out at Embrapa Semi-Árido, Petrolina-PE, Brazil, aiming to understand the gas exchange process of the umbu tree (Spondias tuberosa Arr. Cam.) in the dry and rainy seasons. Stomatal conductance, transpiration, photosynthesis and internal CO2 concentration were obtained with a portable infrared gas analyzer (IRGA). During the dry season the umbu tree showed a much lower stomatal conductance early in the morning, as soon as the vapor pressure deficit increased, apparently affecting CO2 assimilation more than transpiration. The highest values were detected around 6:00 am but decreased to the lowest points between 10:00 am and 2:00 pm. During the rainy season, however, stomatal conductance, transpiration and photosynthesis were significantly higher, reaching the highest values between 8:00 and 10:00 am and the lowest around 2:00 pm. It was also observed at 4:00 pm, mainly during the rainy season, an increase on these variables indicating that the umbu tree exhibits a two-picked daily course of gas exchange.
Resumo:
The experiment was carried out at the Embrapa Semi-Árido, Petrolina-PE, Brazil, in order to study the physiological responses of umbu plants propagated by seeds and by stem cuttings under water stress conditions, based on leaf water potential and gas exchange measurements. Data were collected in one-year plants established in pots containing 30 kg of a sandy soil and submitted to twenty-day progressive soil water deficit. The evaluations were based on leaf water potential and gas exchange data collection using psychrometric chambers and a portable infra-red gas analyzer, respectively. Plants propagated by seeds maintained a significantly higher water potential, stomatal conductance, transpiration and photosynthesis under decreasing soil water availability. However, plants propagated by stem cuttings were unable to maintain a favorable internal water balance, reflecting negatively on stomatal conductance and leaf gas exchange. This fact is probably because umbu plants propagated by stem cuttings are not prone to formation of root tubers which are reservoirs for water and solutes. Thus, the establishing of umbu plants propagated by stem cuttings must be avoided in areas subjected to soil water deficit.
Resumo:
In this work we will prove that SiC-based MIS capacitors can work in environments with extremely high concentrations of water vapor and still be sensitive to hydrogen, CO and hydrocarbons, making these devices suitable for monitoring the exhaust gases of hydrogen or hydrocarbons based fuel cells. Under the harshest conditions (45% of water vapor by volume ratio to nitrogen), Pt/TaOx/SiO2/SiC MIS capacitors are able to detect the presence of 1 ppm of hydrogen, 2 ppm of CO, 100 ppm of ethane or 20 ppm of ethene, concentrations that are far below the legal permissible exposure limits.
Resumo:
Postmortem imaging consists in the non-invasive examination of bodies using medical imaging techniques. However, gas volume quantification and the interpretation of the gas collection results from cadavers remain difficult. We used whole-body postmortem multi-detector computed tomography (MDCT) followed by a full autopsy or external examination to detect the gaseous volumes in bodies. Gases were sampled from cardiac cavities, and the sample compositions were analyzed by headspace gas chromatography-mass spectrometry/thermal conductivity detection (HS-GC-MS/TCD). Three categories were defined according to the presumed origin of the gas: alteration/putrefaction, high-magnitude vital gas embolism (e.g., from scuba diving accident) and gas embolism of lower magnitude (e.g., following a traumatic injury). Cadaveric alteration gas was diagnosed even if only one gas from among hydrogen, hydrogen sulfide or methane was detected. In alteration cases, the carbon dioxide/nitrogen ratio was often >0.2, except in the case of advanced alteration, when methane presence was the best indicator. In the gas embolism cases (vital or not), hydrogen, hydrogen sulfide and methane were absent. Moreover, with high-magnitude vital gas embolisms, carbon dioxide content was >20%, and the carbon dioxide/nitrogen ratio was >0.2. With gas embolisms of lower magnitude (gas presence consecutive to a traumatic injury), carbon dioxide content was <20% and the carbon dioxide/nitrogen ratio was often <0.2. We found that gas analysis provided useful assistance to the postmortem imaging diagnosis of causes of death. Based on the quantifications of gaseous cardiac samples, reliable indicators were determined to document causes of death. MDCT examination of the body must be performed as quickly as possible, as does gas sampling, to avoid generating any artifactual alteration gases. Because of cardiac gas composition analysis, it is possible to distinguish alteration gases and gas embolisms of different magnitudes.
Resumo:
Tässä diplomityössä on selvitetty merkittävimpien kotimaisten polttoaineiden määrät Etelä-Karjalassa vuonna 1999. Pääpaino työssä on metsäteollisuuden sivutuotepolttoaineiden tarkastelussa. Metsähakkeelle ja kierrätyspolttoaineille on määritetty tuotantopotentiaalit. Myös turpeen tuotantomäärät on selvitetty. Lisäksi työssä on tarkasteltu alueella sijaitsevien teollisuuslaitosten ja kuntien energialaitosten polttoaineiden käyttöä. Työn tuloksia käytetään tutkimuksen seuraavassa vaiheessa, jolloin pyritään kehittämään teollisuusyritysten ja yhdyskuntien välistä energiaintegraatiota. Etelä-Karjalan kemiallisen metsäteollisuuden oman käytön ylijäävä sivutuotepolttoaineiden määrä oli vuonna 1999 yli 230 000 k-m3 (370 GWh). Mekaanisen metsäteollisuuden vastaava luku oli noin 210 000 k-m3 (330 GWh). Puunkäyttömäärien, energiankäyttötietojen ja kirjallisuudesta saatavien osuuksien perusteella mekaanisen metsäteollisuuden sivutuotepolttoaineiden oman käytön ylijäävä määrä olisi noin 350 000 k-m3 (580 GWh). Eroa selittävät lähinnä tilastolliset virheet, sivutuoteliiketoiminnan vähyys ja vaihtoehtoiset käyttökohteet. Metsähakkeen tuotantopotentiaali oli vuoden 1999 hakkuutietoihin perustuen yli 640 000 k-m3, josta tekniset, taloudelliset ja ympäristölliset seikat huomioiden noin 210 000 k-m3 (410 GWh) olisi voitu hyödyntää energiantuotannossa. Etelä-Karjalassa vuonna 1999 syntyneistä jätemääristä olisi arvioiden mukaan voitu valmistaa noin 25 000 tonnia (100 GWh) kierrätyspolttoaineita. Kierrätyspolttoaineiden valmistus alkaa Joutsenossa vuosien 2003 - 2004 välillä. Turpeen tuotantomäärä oli vuonna 1999 noin 1 200 000 tonnia (1020 GWh). Etelä-Karjalan teollisuus ja kuntien energialaitokset käyttivät vuonna 1999 yli 17400 GWh polttoaineita. Ostopolttoaineiden tarve oli noin 4700 GWh, josta lähes 85 % täytettiin maakaasulla. Alueen kunnista kaikki, joissa ei ole kemiallista metsäteollisuutta, pystyisivät teoriassa täyttämään teollisuuden ja energialaitostensa ostopolttoaineiden tarpeen oman kunnan alueelta saatavilla kotimaisilla polttoaineilla.
Resumo:
The close relationship between the chlorophyll-meters readings and the total chlorophyll and nitrogen contents in leaves, has allowed their evaluation both in annual and perennial species. Besides, some physiological events such as the CO2 assimilation have also been estimated by chlorophyll meters. This work was carried out aiming to evaluate the gas exchanges of peach palms as a function of the chlorophyll SPAD-Meter readings. Three year-old peach palms from Yurimaguas, Peru were studied in Ubatuba, SP, Brazil, spaced 2 x 1 m in area under a natural gradient of organic matter which allowed four plots to be considered, according to the peach palms leaves colors, from light yellow to dark green. The SPAD readings and the stomatal frequency of leaflets were evaluated. The photosynthetic photon flux density (PPFD, μmol m-2 s-1), the leaf temperature (Tleaf, ºC), the CO2 assimilation (A, μmol m-2 s-1), the stomatal conductance (g s, mol m-2 s-1), the transpiration (E, mmol m-2 s-1) and the intercellular CO2 concentration (Ci, μmol mol-1) were evaluated with a portable infrared gas analyzer (LCA-4, ADC BioScientific Ltd., Great Amwell, U.K.). A linear increase in the CO2 assimilation as a function of the SPAD readings (y = -0.34 + 0.19x, R² = 0.99), indicates that they can be a rapid and cheap complementary method to evaluate in peach palms some important physiological events, such as CO2 assimilation.