999 resultados para GT3X inclinometer function


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider an exclusion process on a ring in which a particle hops to an empty neighboring site with a rate that depends on the number of vacancies n in front of it. In the steady state, using the well-known mapping of this model to the zero-range process, we write down an exact formula for the partition function and the particle-particle correlation function in the canonical ensemble. In the thermodynamic limit, we find a simple analytical expression for the generating function of the correlation function. This result is applied to the hop rate u(n) = 1 + (b/n) for which a phase transition between high-density laminar phase and low-density jammed phase occurs for b > 2. For these rates, we find that at the critical density, the correlation function decays algebraically with a continuously varying exponent b - 2. We also calculate the two-point correlation function above the critical density and find that the correlation length diverges with a critical exponent nu = 1/(b - 2) for b < 3 and 1 for b > 3. These results are compared with those obtained using an exact series expansion for finite systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The availability of the genome sequence of Mycobacterium tuberculosis H37Rv has encouraged determination of large numbers of protein structures and detailed definition of the biological information encoded therein; yet, the functions of many proteins in M. tuberculosis remain unknown. The emergence of multidrug resistant strains makes it a priority to exploit recent advances in homology recognition and structure prediction to re-analyse its gene products. Here we report the structural and functional characterization of gene products encoded in the M. tuberculosis genome, with the help of sensitive profile-based remote homology search and fold recognition algorithms resulting in an enhanced annotation of the proteome where 95% of the M. tuberculosis proteins were identified wholly or partly with information on structure or function. New information includes association of 244 proteins with 205 domain families and a separate set of new association of folds to 64 proteins. Extending structural information across uncharacterized protein families represented in the M. tuberculosis proteome, by determining superfamily relationships between families of known and unknown structures, has contributed to an enhancement in the knowledge of structural content. In retrospect, such superfamily relationships have facilitated recognition of probable structure and/or function for several uncharacterized protein families, eventually aiding recognition of probable functions for homologous proteins corresponding to such families. Gene products unique to mycobacteria for which no functions could be identified are 183. Of these 18 were determined to be M. tuberculosis specific. Such pathogen-specific proteins are speculated to harbour virulence factors required for pathogenesis. A re-annotated proteome of M. tuberculosis, with greater completeness of annotated proteins and domain assigned regions, provides a valuable basis for experimental endeavours designed to obtain a better understanding of pathogenesis and to accelerate the process of drug target discovery. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present estimates of single spin asymmetry in the electroproduction of J/psi taking into account the transverse momentum-dependent (TMD) evolution of the gluon Sivers function. We estimate single spin asymmetry for JLab, HERMES, COMPASS and eRHIC energies using the color evaporation model of J/psi. We have calculated the asymmetry using recent parameters extracted by Echevarria et al. using the Collins-Soper-Sterman approach to TMD evolution. These recent TMD evolution fits are based on the evolution kernel in which the perturbative part is resummed up to next-to-leading logarithmic accuracy. We have also estimated the asymmetry by using parameters which had been obtained by a fit by Anselmino et al., using both an exact numerical and an approximate analytical solution of the TMD evolution equations. We find that the variation among the different estimates obtained using TMD evolution is much smaller than between these on one hand and the estimates obtained using DGLAP evolution on the other. Even though the use of TMD evolution causes an overall reduction in asymmetries compared to the ones obtained without it, they remain sizable. Overall, upon use of TMD evolution, predictions for asymmetries stabilize.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We compute logarithmic corrections to the twisted index B-6(g) in four-dimensional N = 4 and N = 8 string theories using the framework of the Quantum Entropy Function. We find that these vanish, matching perfectly with the large-charge expansion of the corresponding microscopic expressions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In several wireless sensor networks, it is of interest to determine the maximum of the sensor readings and identify the sensor responsible for it. We propose a novel, decentralized, scalable, energy-efficient, timer-based, one-shot max function computation (TMC) algorithm. In it, the sensor nodes do not transmit their readings in a centrally pre-defined sequence. Instead, the nodes are grouped into clusters, and computation occurs over two contention stages. First, the nodes in each cluster contend with each other using the timer scheme to transmit their reading to their cluster-heads. Thereafter, the cluster-heads use the timer scheme to transmit the highest sensor reading in their cluster to the fusion node. One new challenge is that the use of the timer scheme leads to collisions, which can make the algorithm fail. We optimize the algorithm to minimize the average time required to determine the maximum subject to a constraint on the probability that it fails to find the maximum. TMC significantly lowers average function computation time, average number of transmissions, and average energy consumption compared to approaches proposed in the literature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An iterative image reconstruction technique employing B-Spline potential function in a Bayesian framework is proposed for fluorescence microscopy images. B-splines are piecewise polynomials with smooth transition, compact support and are the shortest polynomial splines. Incorporation of the B-spline potential function in the maximum-a-posteriori reconstruction technique resulted in improved contrast, enhanced resolution and substantial background reduction. The proposed technique is validated on simulated data as well as on the images acquired from fluorescence microscopes (widefield, confocal laser scanning fluorescence and super-resolution 4Pi microscopy). A comparative study of the proposed technique with the state-of-art maximum likelihood (ML) and maximum-a-posteriori (MAP) with quadratic potential function shows its superiority over the others. B-Spline MAP technique can find applications in several imaging modalities of fluorescence microscopy like selective plane illumination microscopy, localization microscopy and STED. (C) 2015 Author(s).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gamma-band (25-140 Hz) oscillations are ubiquitous in mammalian forebrain structures involved in sensory processing, attention, learning and memory. The optic tectum (01) is the central structure in a midbrain network that participates critically in controlling spatial attention. In this review, we summarize recent advances in characterizing a neural circuit in this midbrain network that generates large amplitude, space-specific, gamma oscillations in the avian OT, both in vivo and in vitro. We describe key physiological and pharmacological mechanisms that produce and regulate the structure of these oscillations. The extensive similarities between midbrain gamma oscillations in birds and those in the neocortex and hippocampus of mammals, offer important insights into the functional significance of a midbrain gamma oscillatory code.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A self-consistent mode coupling theory (MCT) with microscopic inputs of equilibrium pair correlation functions is developed to analyze electrolyte dynamics. We apply the theory to calculate concentration dependence of (i) time dependent ion diffusion, (ii) intermediate scattering function of the constituent ions, and (iii) ion solvation dynamics in electrolyte solution. Brownian dynamics with implicit water molecules and molecular dynamics method with explicit water are used to check the theoretical predictions. The time dependence of ionic self-diffusion coefficient and the corresponding intermediate scattering function evaluated from our MCT approach show quantitative agreement with early experimental and present Brownian dynamic simulation results. With increasing concentration, the dispersion of electrolyte friction is found to occur at increasingly higher frequency, due to the faster relaxation of the ion atmosphere. The wave number dependence of intermediate scattering function, F(k, t), exhibits markedly different relaxation dynamics at different length scales. At small wave numbers, we find the emergence of a step-like relaxation, indicating the presence of both fast and slow time scales in the system. Such behavior allows an intriguing analogy with temperature dependent relaxation dynamics of supercooled liquids. We find that solvation dynamics of a tagged ion exhibits a power law decay at long times-the decay can also be fitted to a stretched exponential form. The emergence of the power law in solvation dynamics has been tested by carrying out long Brownian dynamics simulations with varying ionic concentrations. The solvation time correlation and ion-ion intermediate scattering function indeed exhibit highly interesting, non-trivial dynamical behavior at intermediate to longer times that require further experimental and theoretical studies. (c) 2015 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Translation initiation in Hepatitis C Virus (HCV) is mediated by Internal Ribosome Entry Site (IRES), which is independent of cap-structure and uses a limited number of canonical initiation factors. During translation initiation IRES-40S complex formation depends on high affinity interaction of IRES with ribosomal proteins. Earlier, it has been shown that ribosomal protein S5 (RPS5) interacts with HCV IRES. Here, we have extensively characterized the HCV IRES-RPS5 interaction and demonstrated its role in IRES function. Computational modelling and RNA-protein interaction studies demonstrated that the beta hairpin structure within RPS5 is critically required for the binding with domains II and IV. Mutations disrupting IRES-RPS5 interaction drastically reduced the 80S complex formation and the corresponding IRES activity. Computational analysis and UV cross-linking experiments using various IRES-mutants revealed interplay between domains II and IV mediated by RPS5. In addition, present study demonstrated that RPS5 interaction is unique to HCV IRES and is not involved in 40S-3 ` UTR interaction. Further, partial silencing of RPS5 resulted in preferential inhibition of HCV RNA translation. However, global translation was marginally affected by partial silencing of RPS5. Taken together, results provide novel molecular insights into IRES-RPS5 interaction and unravel its functional significance in mediating internal initiation of translation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Helicobacter pylori, a human pathogen, is a naturally and constitutively competent bacteria, displaying a high rate of intergenomic recombination. While recombination events are essential for evolution and adaptation of H.pylori to dynamic gastric niches and new hosts, such events should be regulated tightly to maintain genomic integrity. Here, we analyze the role of the nuclease activity of MutS2, a protein that limits recombination during transformation in H.pylori. In previously studied MutS2 proteins, the C-terminal Smr domain was mapped as the region responsible for its nuclease activity. We report here that deletion of Smr domain does not completely abolish the nuclease activity of HpMutS2. Using bioinformatics analysis and mutagenesis, we identified an additional and novel nuclease motif (LDLK) at the N-terminus of HpMutS2 unique to Helicobacter and related epsilon-proteobacterial species. A single point mutation (D30A) in the LDLK motif and the deletion of Smr domain resulted in approximate to 5-10-fold loss of DNA cleavage ability of HpMutS2. Interestingly, the mutant forms of HpMutS2 wherein the LDLK motif was mutated or the Smr domain was deleted were unable to complement the hyper-recombination phenotype of a mutS2(-) strain, suggesting that both nuclease sites are indispensable for an efficient anti-recombinase activity of HpMutS2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: In the post-genomic era where sequences are being determined at a rapid rate, we are highly reliant on computational methods for their tentative biochemical characterization. The Pfam database currently contains 3,786 families corresponding to ``Domains of Unknown Function'' (DUF) or ``Uncharacterized Protein Family'' (UPF), of which 3,087 families have no reported three-dimensional structure, constituting almost one-fourth of the known protein families in search for both structure and function. Results: We applied a `computational structural genomics' approach using five state-of-the-art remote similarity detection methods to detect the relationship between uncharacterized DUFs and domain families of known structures. The association with a structural domain family could serve as a start point in elucidating the function of a DUF. Amongst these five methods, searches in SCOP-NrichD database have been applied for the first time. Predictions were classified into high, medium and low-confidence based on the consensus of results from various approaches and also annotated with enzyme and Gene ontology terms. 614 uncharacterized DUFs could be associated with a known structural domain, of which high confidence predictions, involving at least four methods, were made for 54 families. These structure-function relationships for the 614 DUF families can be accessed on-line at http://proline.biochem.iisc.ernet.in/RHD_DUFS/. For potential enzymes in this set, we assessed their compatibility with the associated fold and performed detailed structural and functional annotation by examining alignments and extent of conservation of functional residues. Detailed discussion is provided for interesting assignments for DUF3050, DUF1636, DUF1572, DUF2092 and DUF659. Conclusions: This study provides insights into the structure and potential function for nearly 20 % of the DUFs. Use of different computational approaches enables us to reliably recognize distant relationships, especially when they converge to a common assignment because the methods are often complementary. We observe that while pointers to the structural domain can offer the right clues to the function of a protein, recognition of its precise functional role is still `non-trivial' with many DUF domains conserving only some of the critical residues. It is not clear whether these are functional vestiges or instances involving alternate substrates and interacting partners. Reviewers: This article was reviewed by Drs Eugene Koonin, Frank Eisenhaber and Srikrishna Subramanian.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mycobacterium tuberculosis has multiple sigma factors which enable the bacterium to reprogram its transcriptional machinery under diverse environmental conditions. sigma(J), an extracytoplasmic function sigma factor, is upregulated in late stationary phase cultures and during human macrophage infection. sigma(J) governs the cellular response to hydrogen peroxide-mediated oxidative stress. sigma(J) differs from other canonical sigma factors owing to the presence of a SnoaL_2 domain at the C-terminus. sigma(J) crystals belonged to the tetragonal space group I422, with unit-cell parameters a = b = 133.85, c = 75.08 angstrom. Diffraction data were collected to 2.16 angstrom resolution on the BM14 beamline at the European Synchrotron Radiation Facility (ESRF).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we propose a H.264/AVC compressed domain human action recognition system with projection based metacognitive learning classifier (PBL-McRBFN). The features are extracted from the quantization parameters and the motion vectors of the compressed video stream for a time window and used as input to the classifier. Since compressed domain analysis is done with noisy, sparse compression parameters, it is a huge challenge to achieve performance comparable to pixel domain analysis. On the positive side, compressed domain allows rapid analysis of videos compared to pixel level analysis. The classification results are analyzed for different values of Group of Pictures (GOP) parameter, time window including full videos. The functional relationship between the features and action labels are established using PBL-McRBFN with a cognitive and meta-cognitive component. The cognitive component is a radial basis function, while the meta-cognitive component employs self-regulation to achieve better performance in subject independent action recognition task. The proposed approach is faster and shows comparable performance with respect to the state-of-the-art pixel domain counterparts. It employs partial decoding, which rules out the complexity of full decoding, and minimizes computational load and memory usage. This results in reduced hardware utilization and increased speed of classification. The results are compared with two benchmark datasets and show more than 90% accuracy using the PBL-McRBFN. The performance for various GOP parameters and group of frames are obtained with twenty random trials and compared with other well-known classifiers in machine learning literature. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An exact single-product factorisation of the molecular wave function for the timedependent Schrodinger equation is investigated by using an ansatz involving a phasefactor. By using the Frenkel variational method, we obtain the Schrodinger equations for the electronic and nuclear wave functions. The concept of a potential energy surface (PES) is retained by introducing a modified Hamiltonian as suggested earlier by Cederbaum. The parameter in the phase factor is chosen such that the equations of motion retain the physically appealing Born- Oppenheimer-like form, and is therefore unique.