1000 resultados para GAUGE-BOSON COUPLINGS
Resumo:
The scattering of charmed mesons on nucleons is investigated within a chiral quark model inspired on the QCD Hamiltonian in Coulomb gauge. The microscopic model incorporates a longitudinal Coulomb confining interaction derived from a self-consistent quasi-particle approximation to the QCD vacuum, and a traverse hyperfine interaction motivated from lattice simulations of QCD in Coulomb gauge. From the microscopic interactions at the quark level, effective meson-baryon interactions are derived using a mapping formalism that leads to quark-Born diagrams. As an application, the total cross-section of heavy-light D-mesons scattering on nucleons is estimated.
Resumo:
Since the very beginning of it, perhaps the subtlest of all gauges is the light-cone gauge, for its implementation leads to characteristic singularities that require some kind of special prescription to handle them in a. proper and consistent manner. The best known of these prescriptions is the Mandelstam-Leibbrandt one. In this work we revisit it showing that its status as a mere prescription is not appropriate but rather that its origin can be traced back to fundamental physical properties such as causality and covariantization methods. © World Scientific Publishing Company.
Resumo:
In this work we discuss the strength of the trilinear Higgs boson coupling in composite models in a model independent way. The coupling is determined as a function of a very general ansatz for the fermionic self-energy, and turns out to be equal or smaller than the one of the Standard Model Higgs boson depending on the dynamics of the theory. © World Scientific Publishing Company.
Resumo:
We present results from a study of pp̄→Wγ+X events utilizing data corresponding to 0.7fb-1 of integrated luminosity at s=1.96TeV collected by the D0 detector at the Fermilab Tevatron Collider. We set limits on anomalous WWγ couplings at the 95% C.L. The one-dimensional 95% C.L. limits are 0.49<κγ<1.51 and -0.12<λγ<0.13. We make the first study of the charge-signed rapidity difference between the lepton and the photon and find it to be indicative of the standard model radiation-amplitude zero in the Wγ system. © 2008 The American Physical Society.
Resumo:
We report the results of a search for a narrow resonance decaying into two photons in 1.1fb-1 of data collected by the D0 experiment at the Fermilab Tevatron Collider during the period 20022006. We find no evidence for such a resonance and set a lower limit on the mass of a fermiophobic Higgs boson of mhf>100GeV at the 95% C.L. This exclusion limit exceeds those obtained in previous searches at the Fermilab Tevatron and covers a significant region of the parameter space B(hf→I I ) vs mhf which was not accessible at the CERN Large Electron-Positron Collider. © 2008 The American Physical Society.
Resumo:
We present the first search for an electrically charged resonance W′ decaying to a WZ boson pair using 4.1fb-1 of integrated luminosity collected with the D0 detector at the Fermilab Tevatron pp̄ collider. The WZ pairs are reconstructed through their decays into three charged leptons (≤=e, μ). A total of 9 data events is observed in good agreement with the background prediction. We set 95% C.L. limits on the W′WZ coupling and on the W′ production cross section multiplied by the branching fractions. We also exclude W′ masses between 188 and 520 GeV within a simple extension of the standard model and set the most restrictive limits to date on low-scale technicolor models. © 2010 The American Physical Society.
Resumo:
Following the Dirac's technique for constrained systems we performed a detailed analysis of the constraint structure of Podolsky's electromagnetic theory on the null-plane coordinates. The null plane gauge condition was extended to second order theories and appropriate boundary conditions were imposed to guarantee the uniqueness of the inverse of the constraints matrix of the system. Finally, we determined the generalized Dirac brackets of the independent dynamical variables. © 2010 American Institute of Physics.
Resumo:
Recently a Minimal and an Ultraminimal Technicolor models were proposed where the presence of TC fermions in other representations than the fundamental one led to viable models without conflict with the known value for the measured S parameter. In this work we apply the results of [5] to compute the masses of the Higgs boson in the case of the Minimal and Ultraminimal Technicolor models. © 2010 American Institute of Physics.
Resumo:
Objectives: The present study used strain gauge analysis to perform an in vitro evaluation of the effect of axial loading on 3 elements of implant-supported partial fixed prostheses, varying the type of prosthetic cylinder and the loading points. Material and methods: Three internal hexagon implants were linearly embedded in a polyurethane block. Microunit abutments were connected to the implants applying a torque of 20 Ncm, and prefabricated Co-Cr cylinders and plastic prosthetic cylinders were screwed onto the abutments, which received standard patterns cast in Co-Cr alloy (n = 5). Four strain gauges (SG) were bonded onto the surface of the block tangentially to the implants, SG 01 mesially to implant 1, SG 02 and SG 03 mesially and distally to implant 2, respectively, and SG 04 distally to implant 3. Each metallic structure was screwed onto the abutments with a 10 Ncm torque and an axial load of 30 kg was applied at five predetermined points (A, B, C, D, E). The data obtained from the strain gauge analyses were analyzed statistically by RM ANOVA and Tukey's test, with a level of significance of p<0.05. Results: There was a significant difference for the loading point (p=0.0001), with point B generating the smallest microdeformation (239.49 με) and point D the highest (442.77 με). No significant difference was found for the cylinder type (p=0.748). Conclusions: It was concluded that the type of cylinder did not affect in the magnitude of microdeformation, but the axial loading location influenced this magnitude.
Resumo:
We present a measurement of the W boson mass using data corresponding to 4.3fb -1 of integrated luminosity collected with the D0 detector during Run II at the Fermilab Tevatron pp̄ collider. With a sample of 1677394 W→eν candidate events, we measure M W=80.367±0. 026GeV. This result is combined with an earlier D0 result determined using an independent Run II data sample, corresponding to 1fb -1 of integrated luminosity, to yield M W=80.375±0.023GeV. © 2012 American Physical Society.
Resumo:
We report the combination of recent measurements of the helicity of the W boson from top quark decay by the CDF and D0 collaborations, based on data samples corresponding to integrated luminosities of 2.7-5.4fb -1 of pp̄ collisions collected during Run II of the Fermilab Tevatron collider. Combining measurements that simultaneously determine the fractions of W bosons with longitudinal (f 0) and right-handed (f +) helicities, we find f 0=0.722±0.081[±0.062(stat)±0.052(syst)] and f +=-0.033±0.046[±0.034(stat)±0.031(syst)]. Combining measurements where one of the helicity fractions is fixed to the value expected in the standard model, we find f 0=0.682±0. 057[±0.035(stat)±0.046(syst)] for fixed f + and f +=-0.015±0.035[±0.018(stat)±0.030(syst)] for fixed f 0. The results are consistent with standard model expectations. © 2012 American Physical Society.
Resumo:
Results are presented on a search for a light charged Higgs boson that can be produced in the decay of the top quark t → H +b and which, in turn, decays into τ +ν t. The analysed data correspond to an integrated luminosity of about 2 fb -1 recorded in protonproton collisions at √s = 7 TeV by the CMS experiment at the LHC. The search is sensitive to the decays of the top quark pairs tt̄ → H ±W ∓bb̄ and tt̄ → H ±H ∓bb̄. Various final states have been studied separately, all requiring presence of a τ lepton from H + decays, missing transverse energy, and multiple jets. Upper limits on the branching fraction B(t → H +b) in the range of 2-4% are established for charged Higgs boson masses between 80 and 160 GeV, under the assumption that B(H + → τ +ν τ) = 1.
Resumo:
We present a search for the standard model Higgs boson using events with two oppositely charged leptons and large missing transverse energy as expected in H→WW decays. The events are selected from data corresponding to 8.6fb -1 of integrated luminosity in pp̄ collisions at √s=1.96TeV collected with the D0 detector at the Fermilab Tevatron Collider. No significant excess above the standard model background expectation in the Higgs boson mass range this search is sensitive to is observed, and upper limits on the Higgs boson production cross section are derived. © 2012 American Physical Society.
Resumo:
We present the results of the combination of searches for the standard model Higgs boson produced in association with a W or Z boson and decaying into bb̄ using the data sample collected with the D0 detector in pp̄ collisions at √s=1.96TeV at the Fermilab Tevatron Collider. We derive 95% C.L. upper limits on the Higgs boson cross section relative to the standard model prediction in the mass range 100GeV≤M H≤150GeV, and we exclude Higgs bosons with masses smaller than 102 GeV at the 95% C.L. In the mass range 120GeV≤M H≤145GeV, the data exhibit an excess above the background prediction with a global significance of 1.5 standard deviations, consistent with the expectation in the presence of a standard model Higgs boson. © 2012 American Physical Society.
Resumo:
We present a search for the standard model (SM) Higgs boson produced in association with a Z boson in 9.7fb -1 of pp̄ collisions collected with the D0 detector at the Fermilab Tevatron Collider at √s=1.96TeV. Selected events contain one reconstructed Z→e +e - or Z→μ +μ - candidate and at least two jets, including at least one jet identified as likely to contain a b quark. To validate the search procedure, we also measure the cross section for ZZ production in the same final state. It is found to be consistent with its SM prediction. We set upper limits on the ZH production cross section times branching ratio for H→bb̄ at the 95% C.L. for Higgs boson masses 90≤M H≤150GeV. The observed (expected) limit for M H=125GeV is 7.1 (5.1) times the SM cross section. © 2012 American Physical Society.