973 resultados para GAMMA IRRADIATION
Resumo:
Purpose: To analyse prospectively the long-term results of Gamma Knife surgery (GKS) in patients with trigeminal neuralgia secondary to megadolichobasilar artery (MBA). Methods: Between December 1992 and November 2010, 33 consecutive patients presenting with ITN secondary to MBA were operated by GKS and followed prospectively in Timone University Hospital. The follow up is at least of 1 year in 29 patients. The median age was 74.90 years (range 51 to 90). The GKS typically was performed using MR and CT imaging guidance and a single 4 mm isocenter. The median of the prescription dose (at the 100%) was 90 Gy (range 80 to 90). The target was placed on the cisternal portion of the Vth nerve. Clinical and dosimetric parameters were analyzed. GKS was the first surgical procedure in 23 patients (79.31%). Results: The median follow- up period was 46.12 months (range 12.95 to 157.93). All the 29 patients (100%) were initially pain free in a median time of 13.5 days (range 0 to 240). The probability of remaining pain free at 0.5, 1, 2 years was 93.1%, 79.3% and 75.7% respectively, reaching at this time the flat part of the curve. Seven patients (24.13%) experienced a recurrence with a median delay of 10.75 months (range 3.77 to 12.62). The actuarial rate of recurrence was not higher than in our population with essential TN although atypical pain was associated with a much higher risk of recurrence (HR= 6.92, p= 0.0117). The hypoesthesia actuarial rates at 0.5 years was 4.3% and at 1 year reach 13% and remains stable till 12 years with a median delay of onset of 7 (5, 12) months. Female patients had a statistically much lower probability of developing a facial numbness (p of 0.03). No patient reported a bothersome hypoesthesia. Conclusion: Retrogaserian, high dose GKS, turned out to be very safe with only 13.04% hypoesthesia, which was never disabling (0%), while achieving high quality pain control. The majority of the patients demonstrated a prolonged effect of radiosurgery in absence of any trigeminal nerve disturbance.
Resumo:
In many gamma-proteobacteria, the conserved GacS/GacA (BarA/UvrY) two-component system positively controls the expression of one to five genes specifying small RNAs (sRNAs) that are characterized by repeated unpaired GGA motifs but otherwise appear to belong to several independent families. The GGA motifs are essential for binding small, dimeric RNA-binding proteins of a single conserved family designated RsmA (CsrA). These proteins, which also occur in bacterial species outside the gamma-proteobacteria, act as translational repressors of certain mRNAs when these contain an RsmA/CsrA binding site at or near the Shine-Dalgarno sequence plus additional binding sites located in the 5' untranslated leader mRNA. Recent structural data have established that the RsmA-like protein RsmE of Pseudomonas fluorescens makes specific contacts with an RNA consensus sequence 5'-(A)/(U)CANGGANG(U)/(A)-3' (where N is any nucleotide). Interaction with an RsmA/CsrA protein promotes the formation of a short stem supporting an ANGGAN loop. This conformation hinders access of 30S ribosomal subunits and hence translation initiation. The output of the Gac/Rsm cascade varies widely in different bacterial species and typically involves management of carbon storage and expression of virulence or biocontrol factors. Unidentified signal molecules co-ordinate the activity of the Gac/Rsm cascade in a cell population density-dependent manner.
Resumo:
Background: A developmental dysregulation of glutathione (GSH) synthesis leading to oxidative stress, when combined with environmental risk factors (viral infections) generating reactive oxygen species, can play a critical role in inducing schizophrenia phenotypes. GSH deficit induces morphological, physiological and behavioral anomalies analogous to those reported in schizophrenic patients, including disrupted parvalbumine (PV) inhibitory interneuron's integrity and neuronal synchrony (β/γ-oscillations). Methods: We assessed PV immunoreactivity (PV-IR) and local synchronization in prefrontal cortex of two mouse models: (1) mice with a genetic deficit in GSH (GCLM-/-) and (2) mice with prenatal immune activation at embryonic day17 (PolyI:C). Results: Adults from both mice models display reduced PV-IR in prefrontal cortex. In anterior cingulate (ACC) of GCLM-/-, appearance and maturation of PVI are delayed and worsened with peribubertal stress but not in adult one. This effect is reversed by treatment with the GSH precursor N-acetyl-cysteine. The power of beta and gamma oscillations are decreased in ACC of GCLM-/- while they increased in prelimbic cortex of PolyI:C mice. Conclusions: Despite reduced PV-IR in both models, alteration of the synchronization was different, indicating that the structural/functional disruption of the cortical circuitry was partly different in both models. Novel therapeutic strategies are proposed, based on interference with oxidative stress and inflammatory processes.
Resumo:
Purpose/Objective(s): To implement a carotid dose sparing protocol using helical Tomotherapy in T1N0 squamous cell laryngeal carcinoma.Materials/Methods: Between July and August 2010, 7 men with stage T1N0 laryngeal carcinoma were included in this study. Age ranged from 47 - 74 years. Staging included endoscopic examination, CT-scan and MRI when indicated. Planned irradiation dose was 70 Gy in 35 fractions over 7 weeks. A simple treatment planning algorithm for carotid sparing was used: maximum point dose to the carotids 35 Gy, to the spinal cord 30 Gy, and 100% PTV volume to be covered with 95% of the prescribed dose. Carotid volume of interest extended to 1 cm above and below of the PTV. Doses to the carotid arteries, to the critical organs, and to the planned target volume (PTV) with our standard laryngeal irradiation protocol was compared. Daily megavoltage scans were obtained before each fraction. When necessary, the Planned Adaptive software (TomoTherapy Inc., Madison, WI) was used to evaluatethe need for a re-planning, which has never been indicated. Dose data were extracted using the VelocityAI software (Atlanta, GA), and data normalization and dose-volume histogram (DVH) interpolation were realized using the Igor Pro software (Portland, OR).Results:A significant (p\0.05) carotid dose sparing compared to our standard protocol with an average maximum point dose of 38.3 Gy (standard deviation [SD] 4.05 Gy), average mean dose of 18.59 Gy (SD 0.83 Gy) was achieved. In all patients, 95% of the carotid volume received less than 28.4 Gy (SD 0.98 Gy). The average maximum point dose to the spinal cord was 25.8 Gy (SD 3.24 Gy). PTV was fully covered with more than 95% of the prescribed dose for all patients with an average maximum point dose of 74.1 Gy and the absolute maximum dose in a single patient of 75.2 Gy. To date, the clinical outcomes have been excellent. Three patients (42%) developed stage 1 mucositis that was conservatively managed, and all the patients presented a mild to moderate dysphonia. All adverse effects resolved spontaneously in the month following the end of treatment. Early local control rate is 100% considering a 4 - 5 months post treatment follow-up.Conclusions: Helical Tomotherapy allows a clinically significant decrease of carotid irradiation dose compared to standard irradiation protocols with an acceptable spinal cord dose tradeoff. Moreover, this technique allows the PTV to be homogenously covered with a curative irradiation dose. Daily control imaging brings added security margins especially when working with high dose gradients. Further investigations and follow-up are underway to better evaluate the late clinical outcomes especially the local control rate, late laryngeal and vascular toxicity, and expected potential impact on cerebrovascular events.
Resumo:
The peroxisome proliferator-activated receptor gamma (PPARgamma) plays a major role in fat tissue development and physiology. Mutations in the gene encoding this receptor have been associated to disorders in lipid metabolism. A thorough investigation of mice in which one PPARgamma allele has been mutated reveals that male PPARgamma heterozygous (PPARgamma +/-) mice exhibit a reduced body size associated with decreased body weight, reflecting lean mass reduction. This phenotype is reproduced when treating the mice with a PPARgamma- specific antagonist. Monosodium glutamate treatment, which induces weight gain and alters body growth in wild-type mice, further aggravates the growth defect of PPARgamma +/- mice. The levels of circulating GH and that of its downstream effector, IGF-I, are not altered in mutant mice. However, the IGF-I mRNA level is decreased in white adipose tissue (WAT) of PPARgamma +/- mice and is not changed by acute administration of recombinant human GH, suggesting an altered GH action in the mutant animals. Importantly, expression of the gene encoding the suppressor of cytokine signaling-2, which is an essential negative regulator of GH signaling, is strongly increased in the WAT of PPARgamma +/- mice. Although the relationship between the altered GH signaling in WAT and reduced body size remains unclear, our results suggest a novel role of PPARgamma in GH signaling, which might contribute to the metabolic disorder affecting insulin signaling in PPARgamma mutant mice.
Resumo:
Hematopietic stem cells (HSCs) maintain life-long hematopoiesis in the bone marrow via their ability to self-renew and to differentiate into all blood lineages. Although a central role for the canonical wnt signaling pathway has been suggested in HSC self-renewal as well as in the development of B and T cells, conditional deletion of beta-catenin (which is considered to be essential for Wnt signaling) has no effect on hematopoiesis or lymphopoiesis. Here, we address whether this discrepancy can be explained by a redundant and compensatory function of gamma-catenin, a close homolog of beta-catenin. Unexpectedly, we find that combined deficiency of beta- and gamma-catenin in hematopoietic progenitors does not impair their ability to self-renew and to reconstitute all myeloid, erythroid, and lymphoid lineages, even in competitive mixed chimeras and serial transplantations. These results exclude an essential role for canonical Wnt signaling (as mediated by beta- and/or gamma-catenin) during hematopoiesis and lymphopoiesis.
Resumo:
In order to characterize the gene encoding the ligand binding (1(st); alpha) chain of the human IFN-gamma receptor, two overlapping cosmid clones were analyzed. The gene spans over 25 kilobases (kb) of the genomic DNA and has seven exons. The extracellular domain is encoded by exons 1 to 5 and by part of exon 6. The transmembrane region is also encoded by exon 6. Exon 7 encodes the intracellular domain and the 3' untranslated portion. The gene was located on chromosome 6q23.1, as determined by in situ hybridization. The 4 kb region upstream (5') of the gene was sequenced and analyzed for promoter activity. No consensus-matching TATA or CAAT boxes in the 5' region were found. Potential binding sites for Sp1, AP-1, AP-2, and CREB nuclear factors were identified. Compatible with the presence of the Sp1/AP-2 sites and the lack of TATA box, S1-nuclease mapping experiments showed multiple transcription initiation sites. Promoter activity of the 5' flanking region was analyzed with two different reporter genes: the Escherichia coli chloramphenicol acetyltransferase and human growth hormone. The smallest 5' region of the gene that still had full promoter activity was 692 base pairs in length. In addition, we found sequences belonging to the oldest family of Alu repeats, 2 - 3 kb upstream of the gene, which could be useful for genetic studies.
Resumo:
Peroxisome proliferator-activated receptor gamma (PPARgamma) is an essential regulator of adipocyte differentiation, maintenance, and survival. Deregulations of its functions are associated with metabolic diseases. We show here that deletion of one PPARgamma allele not only affected lipid storage but, more surprisingly, also the expression of genes involved in glucose uptake and utilization, the pentose phosphate pathway, fatty acid synthesis, lipolysis, and glycerol export as well as in IR/IGF-1 signaling. These deregulations led to reduced circulating adiponectin levels and an energy crisis in the WAT, reflected in a decrease to nearly half of its intracellular ATP content. In addition, there was a decrease in the metabolic rate and physical activity of the PPARgamma(+/-) mice, which was abolished by thiazolidinedione treatment, thereby linking regulation of the metabolic rate and physical activity to PPARgamma. It is likely that the PPARgamma(+/-) phenotype was due to the observed WAT dysfunction, since the gene expression profiles associated with metabolic pathways were not affected either in the liver or the skeletal muscle. These findings highlight novel roles of PPARgamma in the adipose tissue and underscore the multifaceted action of this receptor in the functional fine tuning of a tissue that is crucial for maintaining the organism in good health.
Resumo:
T cells belong to two mutually exclusive lineages expressing either alpha beta or gamma delta T-cell receptors (TCR). Although alpha beta and gamma delta cells are known to share a common precursor the role of TCR rearrangement and specificity in the lineage commitment process is controversial. Instructive lineage commitment models endow the alpha beta or gamma delta TCR with a deterministic role in lineage choice, whereas separate lineage models invoke TCR-independent lineage commitment followed by TCR-dependent selection and maturation of alpha beta and gamma delta cells. Here we review the published data pertaining to the role of the TCR in alpha beta/gamma delta lineage commitment and provide some additional information obtained from recent intracellular TCR staining studies. We conclude that a variant of the separate lineage model is best able to accommodate all of the available experimental results.
Resumo:
T cells belong to two distinct lineages expressing either alpha beta or gamma delta TCR. During alpha beta T cell development, it is clearly established that productive rearrangement at the TCR beta locus in immature precursor cells leads to the expression of a pre-TCR complex. Signaling through the pre-TCR results in the selective proliferation and maturation of TCR beta+ cells, a process that is known as beta-selection. However, the potential role of beta-selection during gamma delta T cell development is controversial. Whereas PCR-RFLP and sequencing techniques have provided evidence for a bias toward in-frame VDJ beta rearrangements in gamma delta cells (consistent with beta-selection), gamma delta cells apparently develop normally in mice that are unable to assemble a pre-TCR complex due to a deficiency in TCR beta or pT alpha genes. In this report, we have directly addressed the physiologic significance of beta-selection during gamma delta cell development in normal mice by quantitating intracellular TCR beta protein in gamma delta cells and correlating its presence with cell cycle status. Our results indicate that beta-selection plays a significant (although limited) role in gamma delta cell development by selectively amplifying a minor subset of gamma delta precursor cells with productively rearranged TCR beta genes.