749 resultados para Fuzzy Sets


Relevância:

20.00% 20.00%

Publicador:

Resumo:

K. Rasmani and Q. Shen. Data-driven fuzzy rule generation and its application for student academic performance evaluation. Applied Intelligence, 25(3):305-319, 2006.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

M. Galea and Q. Shen. Iterative vs Simultaneous Fuzzy Rule Induction. Proceedings of the 14th International Conference on Fuzzy Systems, pages 767-772.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

K. Rasmani and Q. Shen. Subsethood-based Fuzzy Rule Models and their Application to Student Performance Classification. Proceedings of the 14th International Conference on Fuzzy Systems, pages 755-760, 2005.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

M. Galea, Q. Shen and J. Levine. Evolutionary approaches to fuzzy modelling. Knowledge Engineering Review, 19(1):27-59, 2004.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

M. Galea and Q. Shen. FRANTIC - A system for inducing accurate and comprehensible fuzzy rules. Proceedings of the 2004 UK Workshop on Computational Intelligence, pages 136-143.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

K. Rasmani and Q. Shen. Modifying weighted fuzzy subsethood-based rule models with fuzzy quantifiers. Proceedings of the 13th International Conference on Fuzzy Systems, pages 1679-1684, 2004

Relevância:

20.00% 20.00%

Publicador:

Resumo:

K. Rasmani and Q. Shen. Subsethood-based fuzzy modelling and classification. Proceedings of the 2004 UK Workshop on Computational Intelligence, pages 181-188.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

M. Galea, Q. Shen and V. Singh. Encouraging Complementary Fuzzy Rules within Iterative Rule Learning. Proceedings of the 2005 UK Workshop on Computational Intelligence, pages 15-22.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

M. Galea and Q. Shen. Simultaneous ant colony optimisation algorithms for learning linguistic fuzzy rules. A. Abraham, C. Grosan and V. Ramos (Eds.), Swarm Intelligence in Data Mining, pages 75-99.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Q. Shen and R. Jensen, 'Approximation-based feature selection and application for algae population estimation,' Applied Intelligence, vol. 28, no. 2, pp. 167-181, 2008. Sponsorship: EPSRC RONO: EP/E058388/1

Relevância:

20.00% 20.00%

Publicador:

Resumo:

R. Jensen, Q. Shen, Data Reduction with Rough Sets, In: Encyclopedia of Data Warehousing and Mining - 2nd Edition, Vol. II, 2008.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Shen, Q., Zhao, R., Tang, W. (2008). Modelling random fuzzy renewal reward processes. IEEE Transactions on Fuzzy Systems, 16 (5),1379-1385

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mavron, Vassili; McDonough, T.P.; Key, J.D., (2006) 'Information sets and partial permutation decoding for codes from finite geometries', Finite Fields and their applications 12(2) pp.232-247 RAE2008

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider the problem of building robust fuzzy extractors, which allow two parties holding similar random variables W, W' to agree on a secret key R in the presence of an active adversary. Robust fuzzy extractors were defined by Dodis et al. in Crypto 2006 [6] to be noninteractive, i.e., only one message P, which can be modified by an unbounded adversary, can pass from one party to the other. This allows them to be used by a single party at different points in time (e.g., for key recovery or biometric authentication), but also presents an additional challenge: what if R is used, and thus possibly observed by the adversary, before the adversary has a chance to modify P. Fuzzy extractors secure against such a strong attack are called post-application robust. We construct a fuzzy extractor with post-application robustness that extracts a shared secret key of up to (2m−n)/2 bits (depending on error-tolerance and security parameters), where n is the bit-length and m is the entropy of W . The previously best known result, also of Dodis et al., [6] extracted up to (2m − n)/3 bits (depending on the same parameters).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A procedure that uses fuzzy ARTMAP and K-Nearest Neighbor (K-NN) categorizers to evaluate intrinsic and extrinsic speaker normalization methods is described. Each classifier is trained on preprocessed, or normalized, vowel tokens from about 30% of the speakers of the Peterson-Barney database, then tested on data from the remaining speakers. Intrinsic normalization methods included one nonscaled, four psychophysical scales (bark, bark with end-correction, mel, ERB), and three log scales, each tested on four different combinations of the fundamental (Fo) and the formants (F1 , F2, F3). For each scale and frequency combination, four extrinsic speaker adaptation schemes were tested: centroid subtraction across all frequencies (CS), centroid subtraction for each frequency (CSi), linear scale (LS), and linear transformation (LT). A total of 32 intrinsic and 128 extrinsic methods were thus compared. Fuzzy ARTMAP and K-NN showed similar trends, with K-NN performing somewhat better and fuzzy ARTMAP requiring about 1/10 as much memory. The optimal intrinsic normalization method was bark scale, or bark with end-correction, using the differences between all frequencies (Diff All). The order of performance for the extrinsic methods was LT, CSi, LS, and CS, with fuzzy AHTMAP performing best using bark scale with Diff All; and K-NN choosing psychophysical measures for all except CSi.