992 resultados para Functional experiments
Resumo:
The contribution of demographic, injury, pre-morbid, and parent factors to a child's functional outcome at 6 months post-burn injury was examined. Sixty-eight children, aged 5-14 years with percent total body surface area (%TBSA) burns ranging from
Resumo:
We have developed a computational strategy to identify the set of soluble proteins secreted into the extracellular environment of a cell. Within the protein sequences predominantly derived from the RIKEN representative transcript and protein set, we identified 2033 unique soluble proteins that are potentially secreted from the cell. These proteins contain a signal peptide required for entry into the secretory pathway and lack any transmembrane domains or intracellular localization signals. This class of proteins, which we have termed the mouse secretome, included >500 novel proteins and 92 proteins
Resumo:
Early pregnancy factor (EPF) is a secreted protein with growth regulatory and immunomodulatory properties. It is an extracellular form of the mitochondrial matrix protein chaperonin 10 (Cpn10), a molecular chaperone. An understanding of the mechanism of action of EPF and an exploration of therapeutic potential has been limited by availability of purified material. The present study was undertaken to develop a simple high-yielding procedure for preparation of material for structure/function studies, which could be scaled up for therapeutic application. Human EPF was expressed in Sf9 insect cells by baculovirus infection and in Escherichia coli using a heat inducible vector. A modified molecule with an additional N-terminal alanine was also expressed in E coli. The soluble protein was purified from cell lysates via anion exchange (negative-binding mode), cation exchange, and hydrophobic interaction chromatography, yielding similar to42 and 36 mg EPF from 300 ml bacterial and I L Sf9 cultures, respectively. The preparations were highly purified ( greater than or equal to99% purity on SDS-PAGE for the bacterial products and greater than or equal to97% for that of insect cells) and had the expected mass and heptameric structure under native conditions, as determined by mass spectrometry and gel permeation chromatography, respectively. All recombinant preparations exhibited activity in the EPF bioassay, the rosette inhibition test, with similar potency both to each other and to the native molecule. In two in vivo assays of immuno suppressive activity, the delayed-type hypersensitivity reaction and experimental autoimmune encephalomyelitis, the insect cell and modified bacterial products, both with N-terminal additions (acetylation or amino acid), exhibited similar levels of suppressive activity, but the bacterial product with no N-terminal modification had no effect in either assay. Studies by others have shown that N-terminal addition is not necessary for Cpn10 activity. By defining techniques for facile production of molecules with and without immunosuppressive properties, the present studies make it possible to explore mechanisms underlying the distinction between EPF and Cpn10 activity. (C) 2003 Elsevier Inc. All rights reserved.
Resumo:
Biogenic amines and their receptors regulate and modulate many physiological and behavioural processes in animals. In vertebrates, octopamine is only found in trace amounts and its function as a true neurotransmitter is unclear. In protostomes, however, octopamine can act as neurotransmitter, neuromodulator and neurohormone. In the honeybee, octopamine acts as a neuromodulator and is involved in learning and memory formation. The identification of potential octopamine receptors is decisive for an understanding of the cellular pathways involved in mediating the effects of octopamine. Here we report the cloning and functional characterization of the first octopamine receptor from the honeybee, Apis mellifera . The gene was isolated from a brain-specific cDNA library. It encodes a protein most closely related to octopamine receptors from Drosophila melanogaster and Lymnea stagnalis . Signalling properties of the cloned receptor were studied in transiently transfected human embryonic kidney (HEK) 293 cells. Nanomolar to micromolar concentrations of octopamine induced oscillatory increases in the intracellular Ca2+ concentration. In contrast to octopamine, tyramine only elicited Ca2+ responses at micromolar concentrations. The gene is abundantly expressed in many somata of the honeybee brain, suggesting that this octopamine receptor is involved in the processing of sensory inputs, antennal motor outputs and higher-order brain functions.
Resumo:
Objective: To examine the association between gain in motor and cognitive functional status with patient satisfaction 3-6 mo after rehabilitation discharge. Design: Patient satisfaction and changes in functional status were examined in 18,375 patients with stroke who received inpatient medical rehabilitation. Information was obtained from 144 hospitals and rehabilitation facilities contributing records to the Uniform Data System for Medical Rehabilitation and the National Follow-up Services. Results: Data analysis revealed significant (P < 0.05) differences in satisfaction responses based on whether information was collected from patient self-report or from a family member proxy, and the two subsets were analyzed separately. Logistic regression revealed the following significant predictors of satisfaction for data collected from stroke patients: cognitive and motor gain, rehospitalization, who the patient was living with at follow-up, age, and follow-up therapy. In the patient-reported data subset, compared with patients who showed improved cognitive or motor functional status, those with no change, respectively, had a 31% and 33% reduced risk of dissatisfaction. In addition, rehospitalized patients had a higher risk of dissatisfaction. For the proxy reported data subset, significant influences on satisfaction were health maintenance, rehospitalization, stroke type, ethnicity, cognitive FIM(TM) gain, length of stay, and follow-up therapy. Conclusions: Ratings of satisfaction with rehabilitation services were affected by change in functional status and whether the information was collected from patient rating or proxy response.
Resumo:
[1] Comprehensive measurements are presented of the piezometric head in an unconfined aquifer during steady, simple harmonic oscillations driven by a hydrostatic clear water reservoir through a vertical interface. The results are analyzed and used to test existing hydrostatic and nonhydrostatic, small-amplitude theories along with capillary fringe effects. As expected, the amplitude of the water table wave decays exponentially. However, the decay rates and phase lags indicate the influence of both vertical flow and capillary effects. The capillary effects are reconciled with observations of water table oscillations in a sand column with the same sand. The effects of vertical flows and the corresponding nonhydrostatic pressure are reasonably well described by small-amplitude theory for water table waves in finite depth aquifers. That includes the oscillation amplitudes being greater at the bottom than at the top and the phase lead of the bottom compared with the top. The main problems with respect to interpreting the measurements through existing theory relate to the complicated boundary condition at the interface between the driving head reservoir and the aquifer. That is, the small-amplitude, finite depth expansion solution, which matches a hydrostatic boundary condition between the bottom and the mean driving head level, is unrealistic with respect to the pressure variation above this level. Hence it cannot describe the finer details of the multiple mode behavior close to the driving head boundary. The mean water table height initially increases with distance from the forcing boundary but then decreases again, and its asymptotic value is considerably smaller than that previously predicted for finite depth aquifers without capillary effects. Just as the mean water table over-height is smaller than predicted by capillarity-free shallow aquifer models, so is the amplitude of the second harmonic. In fact, there is no indication of extra second harmonics ( in addition to that contained in the driving head) being generated at the interface or in the interior.
Resumo:
Drying kinetics of low molecular weight sugars such as fructose, glucose, sucrose and organic acid such as citric acid and high molecular weight carbohydrate such as maltodextrin (DE 6) were determined experimentally using single drop drying experiments as well as predicted numerically by solving the mass and heat transfer equations. The predicted moisture and temperature histories agreed with the experimental ones within 6% average relative (absolute) error and average difference of +/- 1degreesC, respectively. The stickiness histories of these drops were determined experimentally and predicted numerically based on the glass transition temperature (T-g) of surface layer. The model predicted the experimental observations with good accuracy. A nonsticky regime for these materials during spray drying is proposed by simulating a drop, initially 120 mum in diameter, in a spray drying environment.
Resumo:
Results of experiments recently performed are reported, in which two optical parametric amplifiers were set up to generate two independently quadrature squeezed continuous wave laser beams. The transformation of quadrature squeezed states into polarization squeezed states and into states with spatial quantum correlations is demonstrated. By utilizing two squeezed laser beams, a polarization squeezed state exhibiting three simultaneously squeezed Stokes operator variances was generated. Continuous variable polarization entanglement was generated and the Einstein-Podolsky-Rosen paradox was observed. A pair of Stokes operators satisfied both the inseparability criterion and the conditional variance criterion. Values of 0.49 and 0.77, respectively, were observed, with entanglement requiring values below unity. The inseparability measure of the observed quadrature entanglement was 0.44. This value is sufficient for a demonstration of quantum teleportation, which is the next experimental goal of the authors.
Resumo:
Functional knowledge of the physiological basis of crop adaptation to stress is a prerequisite for exploiting specific adaptation to stress environments in breeding programs. This paper presents an analysis of yield components for pearl millet, to explain the specific adaptation of local landraces to stress environments in Rajasthan, India. Six genotypes, ranging from high-tillering traditional landraces to low-tillering open-pollinated modern cultivars, were grown in 20 experiments, covering a range of nonstress and drought stress patterns. In each experiment, yield components (particle number, grain number, 100 grain mass) were measured separately for main shoots, basal tillers, and nodal tillers. Under optimum conditions, landraces had a significantly lower grain yield than the cultivars, but no significant differences were observed at yield levels around 1 ton ha(-1). This genotype x environment interaction for grain yield was due to a difference in yield strategy, where landraces aimed at minimising the risk of a crop failure under stress conditions, and modem cultivars aimed at maximising yield potential under optimum conditions. A key aspect of the adaptation of landraces was the small size of the main shoot panicle, as it minimised (1) the loss of productive tillers during stem elongation; (2) the delay in anthesis if mid-season drought occurs; and (3) the reduction in panicle productivity of the basal tillers under stress. In addition, a low investment in structural panicle weight, relative to vegetative crop growth rate, promoted the production of nodal tillers, providing a mechanism to compensate for reduced basal tiller productivity if stress occurred around anthesis. A low maximum 100 grain mass also ensured individual grain mass was little affected by environmental conditions. The strategy of the high-tillering landraces carries a yield penalty under optimum conditions, but is expected to minimise the risk of a crop failure, particularly if mid-season drought stress occurs. The yield architecture of low-tillering varieties, by contrast, will be suited to end-of-season drought stress, provided anthesis is early. Application of the above adaptation mechanisms into a breeding program could enable the identification of plant types that match the prevalent stress patterns in the target environments. (C) 2003 E.J. van Oosterom. Published by Elsevier Science B.V. All rights reserved.
Resumo:
Isolated segments of the perfused rat tail artery display a high basal tone when compared to other isolated arteries such as the mesenteric and are suitable for the assay of vasopressor agents. However, the perfusion of this artery in the entire tail has not yet been used for functional studies. The main purpose of the present study was to identify some aspects of the vascular reactivity of the rat tail vascular bed and validate this method to measure vascular reactivity. The tail severed from the body was perfused with Krebs solution containing different Ca2+ concentrations at different flow rates. Rats were anesthetized with sodium pentobarbital (65 mg/kg) and heparinized (500 U). The tail artery was dissected near the tail insertion, cannulated and perfused with Krebs solution plus 30 µM EDTA at 36oC and 2.5 ml/min and the procedures were started after equilibration of the perfusion pressure. In the first group a dose-response curve to phenylephrine (PE) (0.5, 1, 2 and 5 µg, bolus injection) was obtained at different flow rates (1.5, 2.5 and 3.5 ml/min). The mean perfusion pressure increased with flow as well as PE vasopressor responses. In a second group the flow was changed (1.5, 2, 2.5, 3 and 3.5 ml/min) at different Ca2+ concentrations (0.62, 1.25, 2.5 and 3.75 mM) in the Krebs solution. Increasing Ca2+ concentrations did not alter the flow-pressure relationship. In the third group a similar protocol was performed but the rat tail vascular bed was perfused with Krebs solution containing PE (0.1 µg/ml). There was an enhancement of the effect of PE with increasing external Ca2+ and flow. PE vasopressor responses increased after endothelial damage with air and CHAPS, suggesting an endothelial modulation of the tone of the rat tail vascular bed. These experiments validate the perfusion of the rat tail vascular bed as a method to investigate vascular reactivity.
Resumo:
Abstract. Graphical user interfaces (GUIs) make software easy to use by providing the user with visual controls. Therefore, correctness of GUI’s code is essential to the correct execution of the overall software. Models can help in the evaluation of interactive applications by allowing designers to concentrate on its more important aspects. This paper describes our approach to reverse engineer an abstract model of a user interface directly from the GUI’s legacy code. We also present results from a case study. These results are encouraging and give evidence that the goal of reverse engineering user interfaces can be met with more work on this technique.
Resumo:
Program slicing is a well known family of techniques intended to identify and isolate code fragments which depend on, or are depended upon, specific program entities. This is particularly useful in the areas of reverse engineering, program understanding, testing and software maintenance. Most slicing methods, and corresponding tools, target either the imperative or the object oriented paradigms, where program slices are computed with respect to a variable or a program statement. Taking a complementary point of view, this paper focuses on the slicing of higher-order functional programs under a lazy evaluation strategy. A prototype of a Haskell slicer, built as proof-of-concept for these ideas, is also introduced
Resumo:
Clone detection is well established for imperative programs. It works mostly on the statement level and therefore is ill-suited for func- tional programs, whose main constituents are expressions and types. In this paper we introduce clone detection for functional programs using a new intermediate program representation, dubbed Functional Control Tree. We extend clone detection to the identi cation of non-trivial func- tional program clones based on the recursion patterns from the so-called Bird-Meertens formalism