983 resultados para Fracture surfaces


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The role of matrix microstructure on the fracture of Al-alloy composites with 60 vol% alumina particulates was studied. The matrix composition and microstructure were systematically varied by changing the infiltration temperature and heat treatment. Characterization was carried out by a combination of metallography, hardness measurements, and fracture studies conducted on compact tension specimens to study the fracture toughness and crack growth in the composites. The composites showed a rise in crack resistance with crack extension (R curves) due to bridges of intact matrix ligaments formed in the crack wake. The steady-state or plateau toughness reached upon stable crack growth was observed to be more sensitive to the process temperature rather than to the heat treatment. Fracture in the composites was predominantly by particle fracture, extensive deformation, and void nucleation in the matrix. Void nucleation occurred in the matrix in the as-solutionized and peak-aged conditions and preferentially near the interface in the underaged and overaged conditions. Micromechanical models based on crack bridging by intact ductile ligaments were modified by a plastic constraint factor from estimates of the plastic zone formed under indentations, and are shown to be adequate in predicting the steady-state toughness of the composite.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fracture toughness and fracture mechanisms in Al2O3/Al composites are described. The unique flexibility offered by pressureless infiltration of molten Al alloys into porous alumina preforms was utilized to investigate the effect of microstructural scale and matrix properties on the fracture toughness and the shape of the crack resistance curves (R-curves). The results indicate that the observed increment in toughness is due to crack bridging by intact matrix ligaments behind the crack tip. The deformation behavior of the matrix, which is shown to be dependent on the microstructural constraints, is the key parameter that influences both the steady-state toughness and the shape of the R-curves. Previously proposed models based on crack bridging by intact ductile particles in a ceramic matrix have been modified by the inclusion of an experimentally determined plastic constraint factor (P) that determines the deformation of the ductile phase and are shown to be adequate in predicting the toughness increment in the composites. Micromechanical models to predict the crack tip profile and the bridge lengths (L) correlate well with the observed behavior and indicate that the composites can be classified as (i) short-range toughened and (ii) long-range toughened on the basis of their microstructural characteristics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of reconstructed ceramic surfaces as templates for nanopatterning has been demonstrated recently. This technique differs from the surface decoration by Au on stepped surfaces of alkali halides which has been a topic of intense research in the past. Some of the intriguing aspects related to the physical origin of the phenomena have been considered here. Based on heterogeneous nucleation of Pt vapor on wedged alumina surfaces, it has been shown that the valley sites are the preferred sites for nucleation. However, the hill sites are decorated by the particles in the present study pointing out to a different physical origin for the formation of the nanoparticles. The role of electrostatic energy reduction on the formation of such nanopatterns is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An attempt has been made to experimentally investigate the fracture process zone (FPZ) using Acoustic Emission (AE) method in High Strength Concrete (HSC) beams subjected to monotonically increasing load. Stress waves are released during the fracture process in materials, which cause acoustic emissions. AE energy released during the fracture of notched HSC beam specimens during Three Point Bend (TPB) tests is measured and is used to investigate the FPZ in the notched HSC beams having 28-day compressive strength of 78.0 MPa. The specimens are tested by Material Testing System (MTS) of 1200 KN capacity employing Crack Mouth Opening Displacement (CMOD) control at the rate of 0.0004 mmlsec in accordance with RILEM recommendations. A brief review on AE technique applied to concrete fracture is presented. The fracture process zone developed and the AE energy released during the fracture process in high strength concrete beam specimens are presented and discussed. It was observed that AE events containing higher energy are located around the notch tip. It may be possible to relate AE energy to fracture energy of concrete.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A modified lattice model using finite element method has been developed to study the mode-I fracture analysis of heterogeneous materials like concrete. In this model, the truss members always join at points where aggregates are located which are modeled as plane stress triangular elements. The truss members are given the properties of cement mortar matrix randomly, so as to represent the randomness of strength in concrete. It is widely accepted that the fracture of concrete structures should not be based on strength criterion alone, but should be coupled with energy criterion. Here, by incorporating the strain softening through a parameter ‘α’, the energy concept is introduced. The softening branch of load-displacement curves was successfully obtained. From the sensitivity study, it was observed that the maximum load of a beam is most sensitive to the tensile strength of mortar. It is seen that by varying the values of properties of mortar according to a normal random distribution, better results can be obtained for load-displacement diagram.