999 resultados para Fort Monroe (Va.)--Aerial views.
Resumo:
Autonomous mission control, unlike automatic mission control which is generally pre-programmed to execute an intended mission, is guided by the philosophy of carrying out a complete mission on its own through online sensing, information processing, and control reconfiguration. A crucial cornerstone of this philosophy is the capability of intelligence and of information sharing between unmanned aerial vehicles (UAVs) or with a central controller through secured communication links. Though several mission control algorithms, for single and multiple UAVs, have been discussed in the literature, they lack a clear definition of the various autonomous mission control levels. In the conventional system, the ground pilot issues the flight and mission control command to a UAV through a command data link and the UAV transmits intelligence information, back to the ground pilot through a communication link. Thus, the success of the mission depends entirely on the information flow through a secured communication link between ground pilot and the UAV In the past, mission success depended on the continuous interaction of ground pilot with a single UAV, while present day applications are attempting to define mission success through efficient interaction of ground pilot with multiple UAVs. However, the current trend in UAV applications is expected to lead to a futuristic scenario where mission success would depend only on interaction among UAV groups with no interaction with any ground entity. However, to reach this capability level, it is necessary to first understand the various levels of autonomy and the crucial role that information and communication plays in making these autonomy levels possible. This article presents a detailed framework of UAV autonomous mission control levels in the context of information flow and communication between UAVs and UAV groups for each level of autonomy.
Resumo:
Interstellar clouds are not featureless, but show quite complex internal structures of filaments and clumps when observed with high enough resolution. These structures have been generated by 1) turbulent motions driven mainly by supernovae, 2) magnetic fields working on the ions and, through neutral-ion collisions, on neutral gas as well, and 3) self-gravity pulling a dense clump together to form a new star. The study of the cloud structure gives us information on the relative importance of each of these mechanisms, and helps us to gain a better understanding of the details of the star formation process. Interstellar dust is often used as a tracer for the interstellar gas which forms the bulk of the interstellar matter. Some of the methods that are used to derive the column density are summarized in this thesis. A new method, which uses the scattered light to map the column density in large fields with high spatial resolution, is introduced. This thesis also takes a look at the grain alignment with respect to the magnetic fields. The aligned grains give rise to the polarization of starlight and dust emission, thus revealing the magnetic field. The alignment mechanisms have been debated for the last half century. The strongest candidate at present is the radiative torques mechanism. In the first four papers included in this thesis, the scattered light method of column density estimation is formulated, tested in simulations, and finally used to obtain a column density map from observations. They demonstrate that the scattered light method is a very useful and reliable tool in column density estimation, and is able to provide higher resolution than the near-infrared color excess method. These two methods are complementary. The derived column density maps are also used to gain information on the dust emissivity within the observed cloud. The two final papers present simulations of polarized thermal dust emission assuming that the alignment happens by the radiative torques mechanism. We show that the radiative torques can explain the observed decline of the polarization degree towards dense cores. Furthermore, the results indicate that the dense cores themselves might not contribute significantly to the polarized signal, and hence one needs to be careful when interpreting the observations and deriving the magnetic field.
Resumo:
Agricultural pests are responsible for millions of dollars in crop losses and management costs every year. In order to implement optimal site-specific treatments and reduce control costs, new methods to accurately monitor and assess pest damage need to be investigated. In this paper we explore the combination of unmanned aerial vehicles (UAV), remote sensing and machine learning techniques as a promising technology to address this challenge. The deployment of UAVs as a sensor platform is a rapidly growing field of study for biosecurity and precision agriculture applications. In this experiment, a data collection campaign is performed over a sorghum crop severely damaged by white grubs (Coleoptera: Scarabaeidae). The larvae of these scarab beetles feed on the roots of plants, which in turn impairs root exploration of the soil profile. In the field, crop health status could be classified according to three levels: bare soil where plants were decimated, transition zones of reduced plant density and healthy canopy areas. In this study, we describe the UAV platform deployed to collect high-resolution RGB imagery as well as the image processing pipeline implemented to create an orthoimage. An unsupervised machine learning approach is formulated in order to create a meaningful partition of the image into each of the crop levels. The aim of the approach is to simplify the image analysis step by minimizing user input requirements and avoiding the manual data labeling necessary in supervised learning approaches. The implemented algorithm is based on the K-means clustering algorithm. In order to control high-frequency components present in the feature space, a neighbourhood-oriented parameter is introduced by applying Gaussian convolution kernels prior to K-means. The outcome of this approach is a soft K-means algorithm similar to the EM algorithm for Gaussian mixture models. The results show the algorithm delivers decision boundaries that consistently classify the field into three clusters, one for each crop health level. The methodology presented in this paper represents a venue for further research towards automated crop damage assessments and biosecurity surveillance.
Resumo:
This paper presents an algorithm for solid model reconstruction from 2D sectional views based on volume-based approach. None of the existing work in automatic reconstruction from 2D orthographic views have addressed sectional views in detail. It is believed that the volume-based approach is better suited to handle different types of sectional views. The volume-based approach constructs the 3D solid by a boolean combination of elementary solids. The elementary solids are formed by sweep operation on loops identified in the input views. The only adjustment to be made for the presence of sectional views is in the identification of loops that would form the elemental solids. In the algorithm, the conventions of engineering drawing for sectional views, are used to identify the loops correctly. The algorithm is simple and intuitive in nature. Results have been obtained for full sections, offset sections and half sections. Future work will address other types of sectional views such as removed and revolved sections and broken-out sections. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
The goal of the single building information model has existed for at least thirty years and various standards have been published leading up to the ten-year development of the Industry Foundation Classes. These have been initiatives from researchers, software developers and standards committees. Now large property owners are becoming aware of the benefits of moving IT tools from specific applications towards more comprehensive solutions. This study addresses the state of Building Information Models and the conditions necessary for them to become more widely used. It is a qualitative study based on information from a number of international experts and has asked a series of questions about the feasibility of BIMs, the conditions necessary for their success, and the role of standards with particular reference to the IFCs. Some key statements were distilled from the diverse answers received and indicate that BIM solutions appear too complex for many and may need to be applied in limited areas initially. Standards are generally supported but not applied rigorously and a range of these are relevant to BIM. Benefits will depend upon the building procurement methods used and there should be special roles within the project team to manage information. Case studies are starting to appear and these could be used for publicity. The IFCs are rather oversold and their complexities should be hidden within simple-to-use software. Inevitably major questions remain and property owners may be the key to answering some of these. A framework for presenting standards, backed up by case studies of successful projects, is the solution proposed to provide better information on where particular BIM standards and solutions should be applied in building projects.
Resumo:
Classical description of thermodynamic properties during glass transition has been questioned by the entropy-loss model. The uncompensated loss of entropy at the glass transition temperature and zero residual entropy is at the heart of the controversy. Both the models are critically reviewed. A unified model is presented which incorporates features of both entropy loss and residual entropy. It implies two different types of contributions to the entropy of the supercooled liquid, one of which vanishes at the transition and the other which contributes to residual entropy. Entropy gain during spontaneous relaxation of glass, and the nature of heat capacity `hysteresis' during cooling and heating through the glass transition range support the proposed model. Experiments are outlined for differentiating between the models.
Resumo:
Much of the benefits of deploying unmanned aerial vehicles can be derived from autonomous missions. For such missions, however, sense-and-avoid capability (i.e., the ability to detect potential collisions and avoid them) is a critical requirement. Collision avoidance can be broadly classified into global and local path-planning algorithms, both of which need to be addressed in a successful mission. Whereas global path planning (which is mainly done offline) broadly lays out a path that reaches the goal point, local collision-avoidance algorithms, which are usually fast, reactive, and carried out online, ensure safety of the vehicle from unexpected and unforeseen obstacles/collisions. Even though many techniques for both global and local collision avoidance have been proposed in the recent literature, there is a great interest around the globe to solve this important problem comprehensively and efficiently and such techniques are still evolving. This paper presents a brief overview of a few promising and evolving ideas on collision avoidance for unmanned aerial vehicles, with a preferential bias toward local collision avoidance.
Resumo:
An attempt has been made to review current information on the microscopic thermodynamics of liquid alloys. For complex alloys, and for alloys of simple metals with strong "compound-forming" tendencies, the fluctuation approach developed by Bhatia and his co-workers provides a useful link between the fluctuation in concentration and number density of atoms in the mixture on the one hand, and macroscopic thermodynamic properties on the other. Some selected examples of the application of structural data of liquid alloys to estimating macroscopic thermodynamic properties such as the Gibbs free energy of mixing, coupled with the fluctuation approach are given. The relevant thermodynamic quantities such as vapor pressure and entropy are also discussed, to facilitate the understanding of the present status of the fundamental and powerful links between macroscopic and microscopic (atomic scale) structure of liquid alloys (Mg--Sn, Li--Pb, Hg--K). 63 ref.--AA
Resumo:
A new and efficient approach to construct a 3D wire-frame of an object from its orthographic projections is described. The input projections can be two or more and can include regular and complete auxiliary views. Each view may contain linear, circular and other conic sections. The output is a 3D wire-frame that is consistent with the input views. The approach can handle auxiliary views containing curved edges. This generality derives from a new technique to construct 3D vertices from the input 2D vertices (as opposed to matching coordinates that is prevalent in current art). 3D vertices are constructed by projecting the 2D vertices in a pair of views on the common line of the two views. The construction of 3D edges also does not require the addition of silhouette and tangential vertices and subsequently splitting edges in the views. The concepts of complete edges and n-tuples are introduced to obviate this need. Entities corresponding to the 3D edge in each view are first identified and the 3D edges are then constructed from the information available with the matching 2D edges. This allows the algorithm to handle conic sections that are not parallel to any of the viewing directions. The localization of effort in constructing 3D edges is the source of efficiency of the construction algorithm as it does not process all potential 3D edges. Working of the algorithm on typical drawings is illustrated. (C) 2011 Elsevier Ltd. All rights reserved.