824 resultados para Forensic Tools
Resumo:
Bovine Respiratory Disease (BRD) is considered to be one of the most significant causes of economic loss in cattle worldwide. The disease has multifactorial aetiology, where viral induced respiratory damage can predispose animals to developing secondary bacterial infections. Accurate identification of viral infected animals prior to the onset of bacterial infection is necessary to reduce the overuse of antimicrobial treatments and minimize further economic losses from reduced production capacity and death. This research focuses on Bovine Parainfluenza Virus Type 3 (BPIV-3), one of the viruses involved in generating BRD. Vaccination measures for BPIV-3 can induce a level of immunity preventing disease progression, however, not all animals respond equally and immunization can complicate disease diagnosis. Alternative diagnostic approaches are required to identify animals which fail to respond to vaccination during infection outbreaks and are therefore likely to be more susceptible to secondary bacterial infections. Mass spectrometry based metabolomics was employed to identify plasma markers capable of differentiating between vaccinated and non-vaccinated calves after challenge with BPIV-3. Differentiation of vaccinated and non-vaccinated study groups (n=6) was possible as early as day 2 post-BPIV-3 challenge up until day 20 using a panel of potential metabolite markers. This study illustrates the potential for metabolomics to provide more detailed information on animal vaccination status that could be used to develop tools for improved herd health management, reduce economic loss through rapid identification and isolation of animals without immune protection (improving herd level immunity) and help reduce the usage of antimicrobial therapeutic treatments in animals.
Resumo:
Evidence for osseous technologies has featured in excavation reports from Southeast Asia for almost a century and from archaeological deposits as old as 43,000 years BP. However, in contrast to the significance that is placed on this technology in other parts of the world, until recently, Southeast Asian assemblages have drawn only very limited attention. Concentrating on evidence from Malaysia, the current paper examines one element of this inventory of tools: the deliberate modification of pig canines and the means by which such alteration can be distinguished from patterns of natural tooth wear. Particular attention is paid to the bearded pig (Sus barbatus), as it is one of the two species of wild boar in Malaysia whose tusks are most likely to have been used by prehistoric toolmakers. Reference is also made to wider, regional ethnographic examples of known tusk implements and their accredited uses to further assist in the identification process. Distinguishing criteria for worked tusk are formulated according to the type and extent of modification. These criteria are then applied to archaeological specimens recovered from two prehistoric cave sites in Malaysia, Gua Bintong and Niah Cave.
Resumo:
The monitoring of oral disease is important, not alone for oral health, but for the detection and prevention of
systemic disease. The link between oral health and systemic disease is the focus of many studies, with
indications emerging of a causal link [1]. For disease diagnostics, blood has typically been the fluid of choice
for analysis, the retrieval of which is invasive and therefore unsuitable for wearable technology. Analysis of
saliva, however, is less invasive than that of blood, requires little or no pre-treatment and is abundantly
available. A strong correlation has been found between the analytes of blood and saliva [2] with saliva
containing biomarkers for diseases such as diabetes, oral cancer and cardiovascular disease. The development of
an implantable multi-parametric wireless sensor, to monitor both salivary analytes and changes in gingival
temperature, is the aim of this research project.
The aim of our current study is to detect changes in salivary pH, using a gold electrode with a pHsensitive
iridium oxide layer, and an Ion Sensitive Field Effect Transistor probe. Characterisation studies were
carried out in artificial saliva (AS). A salivary pH of between 4.5pH-7.5pH [3], and gingival temperature
between 35°C-38°C [4], were identified as the target range of interest for the human oral environment. Sensor
measurements were recorded in solutions of varying pH and temperature. An ISFET probe was then implanted
into a prototype denture and characterised in AS. This study demonstrates the suitability of ISFET and gold
electrode pH sensors for incorporation into implantable oral sensors.
[1] G. Taylor and W. Borgnakke, “Periodontal disease: associations with diabetes, glycemic control and
complications,” Oral Dis., vol. 14, no. 3, pp. 191–203, Apr. 2008.
[2] E. Tékus, M. Kaj, E. Szabó, N. L. Szénási, I. Kerepesi, M. Figler, R. Gábriel, and M. Wilhelm,
“Comparison of blood and saliva lactate level after maximum intensity exercise,” Acta Biol. Hung., vol. 63
Suppl 1, pp. 89–98, 2012.
[3] S. Naveen, M. L. Asha, G. Shubha, A. Bajoria, and A. Jose, “Salivary Flow Rate, pH and Buffering
Capacity in Pregnant and Non Pregnant Women - A Comparative Study,” JMED Res., pp. 1–8, Feb. 2014.
[4] A. F. Holthuis and F. S. Chebib, “Observations on temperature and temperature patterns of the gingiva. I.
The effect of arch, region and health,” J. Periodontol., vol. 54, no. 10, pp. 624–628, Oct. 1983
Resumo:
Two common scenarios in Geoforensics (definition in text) are considered: the provenance, or localization of unknown samples and the question of sample variability at scenes of crime/alibi locations. Both have been discussed in forensic and soil science publications, but mostly within a theoretical or non-forensic context. These previous publications provide context for the two case study scenarios (one actual, one based on a range of criminal casework) that consider provenance and variability. A challenging scientific question in geoforensics is the provenance question: ‘where may this sample have come from?’ A question the Tellus data can assist in answering. The question of variation between samples maybe less of a challenge, yet variation between a suspect sample within a scene of crime requires detailed sampling. Variation on a larger (tens to hundreds of kilometres) scale may provide useful intelligence on where a sample came from. To summarise, databases such as Tellus and TellusBorder may be used as effective tools to assist in the search for the origin of displaced soil and sediment
Resumo:
We describe a protocol for the generation and validation of bacteria microarrays and their application to the study of specific features of the pathogen's surface and interactions with host receptors. Bacteria were directly printed on nitrocellulose-coated glass slides, using either manual or robotic arrayers, and printing quality, immobilization efficiency and stability of the arrays were rigorously controlled by incorporating a fluorescent dye into the bacteria. A panel of wild type and mutant strains of the human pathogen Klebsiella pneumoniae, responsible for nosocomial and community-acquired infections, was selected as model bacteria, and SYTO-13 was used as dye. Fluorescence signals of the printed bacteria were found to exhibit a linear concentration-dependence in the range of 1 x 10(8) to 1 x 10(9) bacteria per ml. Similar results were obtained with Pseudomonas aeruginosa and Acinetobacter baumannii, two other human pathogens. Successful validation of the quality and applicability of the established microarrays was accomplished by testing the capacity of the bacteria array to detect recognition by anti-Klebsiella antibodies and by the complement subcomponent C1q, which binds K. pneumoniae in an antibody-independent manner. The biotin/AlexaFluor-647-streptavidin system was used for monitoring binding, yielding strain-and dose-dependent signals, distinctive for each protein. Furthermore, the potential of the bacteria microarray for investigating specific features, e.g. glycosylation patterns, of the cell surface was confirmed by examining the binding behaviour of a panel of plant lectins with diverse carbohydrate-binding specificities. This and other possible applications of the newly developed arrays, as e.g. screening/evaluation of compounds to identify inhibitors of host-pathogen interactions, make bacteria microarrays a useful and sensitive tool for both basic and applied research in microbiology, biomedicine and biotechnology.
Resumo:
It remains challenging to accurately predict whether an individual arteriovenous fistula (AVF) will mature and be useable for haemodialysis vascular access. Current best practice involves the use of routine clinical assessment and ultrasonography complemented by selective venography and magnetic resonance imaging. The purpose of this literature review is to describe current practices in relation to pre-operative assessment prior to AVF formation and highlight potential areas for future research to improve the clinical prediction of AVF outcomes.
Resumo:
In this case, an individual was suspected of attempting to burn materials potentially relating to a murder case. A number of spent and unspent matches were seized at the scene by police for forensic examination. Coincidentally, a police raid at the suspect's house revealed a number of matchboxes, all of the same brand, containing matches that had a visual similarity to those recovered at the scene. Stable Isotope Profiling (SIP) was used to assess whether matches could either be distinguished or shown to be indistinguishable by 13C and 2H isotopic composition. These results were then compared to those from the X-ray diffraction (XRD) analysis of match heads and microscopy of the wood. SIP showed the scene matches and seized matches to be different, which was confirmed by XRD and microscopy analyses.
Resumo:
Rationale, aims and objectives: This study aimed to determine the value of using a mix of clinical pharmacy data and routine hospital admission spell data in the development of predictive algorithms. Exploration of risk factors in hospitalized patients, together with the targeting strategies devised, will enable the prioritization of clinical pharmacy services to optimize patient outcomes.
Methods: Predictive algorithms were developed using a number of detailed steps using a 75% sample of integrated medicines management (IMM) patients, and validated using the remaining 25%. IMM patients receive targeted clinical pharmacy input throughout their hospital stay. The algorithms were applied to the validation sample, and predicted risk probability was generated for each patient from the coefficients. Risk threshold for the algorithms were determined by identifying the cut-off points of risk scores at which the algorithm would have the highest discriminative performance. Clinical pharmacy staffing levels were obtained from the pharmacy department staffing database.
Results: Numbers of previous emergency admissions and admission medicines together with age-adjusted co-morbidity and diuretic receipt formed a 12-month post-discharge and/or readmission risk algorithm. Age-adjusted co-morbidity proved to be the best index to predict mortality. Increased numbers of clinical pharmacy staff at ward level was correlated with a reduction in risk-adjusted mortality index (RAMI).
Conclusions: Algorithms created were valid in predicting risk of in-hospital and post-discharge mortality and risk of hospital readmission 3, 6 and 12 months post-discharge. The provision of ward-based clinical pharmacy services is a key component to reducing RAMI and enabling the full benefits of pharmacy input to patient care to be realized.
Resumo:
This paper outlines a forensic method for analysing the energy, environmental and comfort performance of a building. The method has been applied to a recently developed event space in an Irish public building, which was evaluated using on-site field studies, data analysis, building simulation and occupant surveying. The method allows for consideration of both the technological and anthropological aspects of the building in use and for the identification of unsustainable operational practice and emerging problems. The forensic analysis identified energy savings of up to 50%, enabling a more sustainable, lower-energy operational future for the building. The building forensic analysis method presented in this paper is now planned for use in other public and commercial buildings.