556 resultados para Flour


Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background Gliadins are a major component of gluten proteins but their role in the mixing of dough is not well understood because their contribution to wheat flour functional properties are not as clear as for the glutenin fraction. Methodology/Principal Findings Transgenic lines of bread wheat with γ-gliadins suppressed by RNAi are reported. The effects on the gluten protein composition and on technological properties of flour were analyzed by RP-HPLC, by sodium dodecyl sulfate sedimentation (SDSS) test and by Mixograph analysis. The silencing of γ-gliadins by RNAi in wheat lines results in an increase in content of all other gluten proteins. Despite the gluten proteins compensation, in silico analysis of amino acid content showed no difference in the γ-gliadins silenced lines. The SDSS test and Mixograph parameters were slightly affected by the suppression of γ-gliadins. Conclusions/Significance Therefore, it is concluded that γ-gliadins do not have an essential functional contribution to the bread-making quality of wheat dough, and their role can be replaced by other gluten proteins

Relevância:

10.00% 10.00%

Publicador:

Resumo:

El presente trabajo trata sobre la evolución de las construcciones rurales en una de las mayores regiones españolas, La Mancha. Se analizan básicamente tres puntos: a) Los materiales y sistemas de ejecución. b) Los diseños. c) Como síntesis de las dos anteriores. Las tipologías. Los materiales se estudian por periodos de tiempo, y los diseños por tipo de edificación agraria. Se ha deducido que los edificios más interesantes por su evolución son las bodegas, harineras y almazaras. SUMMARY The present work deals on evolution suffered by rural buildings in one of the larger spanish región, La Mancha. Three different points have been analysed: a) Materials and carrying out systems. b) Designs. c) As a synthesis of the both above, typologys. Materials have been studied by periods of time, designs by type of rural buildings. It has been thought the most interesting buildings, in terms of evolution, are wineries, flour milis and olive-oil milis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

El trigo blando (Triticum aestivum ssp vulgare L., AABBDD, 2n=6x=42) presenta propiedades viscoélasticas únicas debidas a la presencia en la harina de las prolaminas: gluteninas y gliadinas. Ambos tipos de proteínas forman parte de la red de gluten. Basándose en la movilidad en SDS-PAGE, las gluteninas se clasifican en dos grupos: gluteninas de alto peso molecular (HMW-GS) y gluteninas de bajo peso molecular (LMW-GS). Los genes que codifican para las HMW-GS se encuentran en tres loci del grupo 1 de cromosomas: Glu-A1, Glu-B1 y Glu-D1. Cada locus codifica para uno o dos polipéptidos o subunidades. La variación alélica de las HMW-GS es el principal determinante de de la calidad harino-panadera y ha sido ampliamente estudiado tanto a nivel de proteína como de ADN. El conocimiento de estas proteínas ha contribuido sustancialmente al progreso de los programas de mejora para la calidad del trigo. Comparadas con las HMW-GS, las LMW-GS forman una familia proteica mucho más compleja. La mayoría de los genes LMW se localizan en el grupo 1 de cromosomas en tres loci: Glu-A3, Glu-B3 y Glu-D3 que se encuentran estrechamente ligados a los loci que codifican para gliadinas. El número de copias de estos genes ha sido estimado entre 10-40 en trigo hexaploide, pero el número exacto aún se desconoce debido a la ausencia de un método eficiente para diferenciar los miembros de esta familia multigénica. La nomenclatura de los alelos LMW-GS por electroforesis convencional es complicada, y diferentes autores asignan distintos alelos a la misma variedad lo que dificulta aún más el estudio de esta compleja familia. El uso de marcadores moleculares para la discriminación de genes LMW, aunque es una tarea dificil, puede ser muy útil para los programas de mejora. El objetivo de este trabajo ha sido profundizar en la relación entre las gluteninas y la calidad panadera y desarrollar marcadores moleculares que permitan ayudar en la correcta clasificación de HMW-GS y LMW-GS. Se han obtenido dos poblaciones de líneas avanzadas F4:6 a partir de los cruzamientos entre las variedades â˜Tigreâ x â˜Gazulâ y â˜Fielâ x â˜Taberâ, seleccionándose para los análisis de calidad las líneas homogéneas para HMW-GS, LMW-GS y gliadinas. La determinación alélica de HMW-GS se llevó a cabo por SDS-PAGE, y se complementó con análisis moleculares, desarrollándose un nuevo marcador de PCR para diferenciar entre las subunidades Bx7 y Bx7*del locus Glu-B1. Resumen 2 La determinación alélica para LMW-GS se llevó a cabo mediante SDS-PAGE siguiendo distintas nomenclaturas y utilizando variedades testigo para cada alelo. El resultado no fue concluyente para el locus Glu-B3, así que se recurrió a marcadores moleculares. El ADN de los parentales y de los testigos se amplificó usando cebadores diseñados en regiones conservadas de los genes LMW y fue posteriormente analizado mediante electroforesis capilar. Los patrones de amplificación obtenidos fueron comparados entre las distintas muestras y permitieron establecer una relación con los alelos de LMW-GS. Con este método se pudo aclarar la determinación alélica de este locus para los cuatro parentales La calidad de la harina fue testada mediante porcentaje de contenido en proteína, prueba de sedimentación (SDSS) y alveógrafo de Chopin (parámetros P, L, P/L y W). Los valores fueron analizados en relación a la composición en gluteninas. Las líneas del cruzamiento â˜Fielâ x â˜Taberâ mostraron una clara influencia del locus Glu-A3 en la variación de los valores de SDSS. Las líneas que llevaban el nuevo alelo Glu-A3bâ presentaron valores significativamente mayores que los de las líneas con el alelo Glu-A3f. En las líneas procedentes del cruzamiento â˜Tigre âx â˜Gazulâ, los loci Glu-B1 y Glu-B3 loci mostraron ambos influencia en los parámetros de calidad. Los resultados indicaron que: para los valores de SDSS y P, las líneas con las HMW-GS Bx7OE+By8 fueron significativamente mejores que las líneas con Bx17+By18; y las líneas que llevaban el alelo Glu-B3ac presentaban valores de P significativamente superiores que las líneas con el alelo Glu-B3ad y significativamente menores para los valores de L . El análisis de los valores de calidad en relación a los fragmentos LMW amplificados, reveló un efecto significativo entre dos fragmentos (2-616 y 2-636) con los valores de P. La presencia del fragmento 2-636 estaba asociada a valores de P mayores. Estos fragmentos fueron clonados y secuenciados, confirmándose que correspondían a genes del locus Glu-B3. El estudio de la secuencia reveló que la diferencia entre ambos se hallaba en algunos SNPs y en una deleción de 21 nucleótidos que en la proteína correspondería a un InDel de un heptapéptido en la región repetida de la proteína. En este trabajo, la utilización de líneas que difieren en el locus Glu-B3 ha permitido el análisis de la influencia de este locus (el peor caracterizado hasta la fecha) en la calidad panadera. Además, se ha validado el uso de marcadores moleculares en la determinación alélica de las LMW-GS y su relación con la calidad panadera. Summary 3 Bread wheat (Triticum aestivum ssp vulgare L., AABBDD, 2n=6x=42) flour has unique dough viscoelastic properties conferred by prolamins: glutenins and gliadins. Both types of proteins are cross-linked to form gluten polymers. On the basis of their mobility in SDS-PAGE, glutenins can be classified in two groups: high molecular weight glutenins (HMW-GS) and low molecular weight glutenins (LMW-GS). Genes encoding HMW-GS are located on group 1 chromosomes in three loci: Glu-A1, Glu-B1 and Glu-D1, each one encoding two polypeptides, named subunits. Allelic variation of HMW-GS is the most important determinant for bread making quality, and has been exhaustively studied at protein and DNA level. The knowledge of these proteins has substantially contributed to genetic improvement of bread quality in breeding programs. Compared to HMW-GS, LMW-GS are a much more complex family. Most genes encoded LMW-GS are located on group 1 chromosomes. Glu-A3, Glu-B3 and Glu-D3 loci are closely linked to the gliadin loci. The total gene copy number has been estimated to vary from 10â40 in hexaploid wheat. However, the exact copy number of LMW-GS genes is still unknown, mostly due to lack of efficient methods to distinguish members of this multigene family. Nomenclature of LMW-GS alleles is also unclear, and different authors can assign different alleles to the same variety increasing confusion in the study of this complex family. The use of molecular markers for the discrimination of LMW-GS genes might be very useful in breeding programs, but their wide application is not easy. The objective of this work is to gain insight into the relationship between glutenins and bread quality, and the developing of molecular markers that help in the allele classification of HMW-GS and LMW-GS. Two populations of advanced lines F4:6 were obtained from the cross â˜Tigreâ x â˜Gazulâ and â˜Fielâ x â˜Taberâ. Lines homogeneous for HMW-GS, LMW-GS and gliadins pattern were selected for quality analysis. The allele classification of HMW-GS was performed by SDS-PAGE, and then complemented by PCR analysis. A new PCR marker was developed to undoubtedly differentiate between two similar subunits from Glu-B1 locus, Bx7 and Bx7*. The allele classification of LMW-GS was initially performed by SDS-PAGE following different established nomenclatures and using standard varieties. The results were not completely concluding for Glu-B3 locus, so a molecular marker system was applied. DNA from parental lines and standard varieties was amplified using primers designed in conserved domains of LMW genes and analyzed by capillary electrophoresis. The pattern of amplification products obtained was compared among samples and related to the protein allele classification. It was possible to establish a correspondence between specific amplification products and almost all LMW alleles analyzed. With this method, the allele classification of the four parental lines was clarified. Flour quality of F4:6 advanced lines were tested by protein content, sedimentation test (SDSS) and alveograph (P, L, P/L and W). The values were analyzed in relation to the lines prolamin composition. In the â˜Fielâ x â˜Taberâ population, Glu-A3 locus showed an influence in SDSS values. Lines carrying new allele Glu-A3bâ, presented a significantly higher SDSS value than lines with Glu-A3f allele. In the â˜Tigre âx â˜Gazulâ population, the Glu-B1 and Glu-B3 loci also showed an effect in quality parameters, in SDSS, and P and L values. Results indicated that: for SDSS and P, lines with Bx7OE+By8 were significantly better than lines with Bx17+By18; lines carrying Glu-B3ac allele had a significantly higher P values than Glu-B3ad allele values. lines with and lower L The analysis of quality parameters and amplified LMW fragments revealed a significant influence of two peaks (2-616 y 2-636) in P values. The presence of 2-636 peak gave higher P values than 2-616. These fragments had been cloned and sequenced and identified as Glu-B3 genes. The sequence analysis revealed that the molecular difference between them was some SNPs and a small deletion of 21 nucleotides that in the protein would produce an InDel of a heptapeptide in the repetitive region. In this work, the analysis of two crosses with differences in Glu-3 composition has made possible to study the influence of LMG-GS in quality parameters. Specifically, the influence of Glu-B3, the most interesting and less studied loci has been possible. The results have shown that Glu-B3 allele composition influences the alveograph parameter P (tenacity). The existence of different molecular variants of Glu-B3 alleles have been assessed by using a molecular marker method. This work supports the use of molecular approaches in the study of the very complex LMW-GS family, and validates their application in the analysis of advanced recombinant lines for quality studies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Grain-induced asthma is a frequent occupational allergic disease mainly caused by inhalation of cereal flour or powder. The main professions affected are bakers, confectioners, pastry factory workers, millers, farmers, and cereal handlers. This disorder is usually due to an IgE-mediated allergic response to inhalation of cereal flour proteins. The major causative allergens of grain-related asthma are proteins derived from wheat, rye and barley flour, although baking additives, such as fungal α-amylase are also important. This review deals with the current diagnosis and treatment of grain-induced asthma, emphasizing the role of cereal allergens as molecular tools to enhance diagnosis and management of this disorder. Asthma-like symptoms caused by endotoxin exposure among grain workers are beyond the scope of this review. Progress is being made in the characterization of grain and bakery allergens, particularly cereal-derived allergens, as well as in the standardization of allergy tests. Salt-soluble proteins (albumins plus globulins), particularly members of the α-amylase/trypsin inhibitor family, thioredoxins, peroxidase, lipid transfer protein and other soluble enzymes show the strongest IgE reactivities in wheat flour. In addition, prolamins (not extractable by salt solutions) have also been claimed as potential allergens. However, the large variability of IgE-binding patterns of cereal proteins among patients with grain-induced asthma, together with the great differences in the concentrations of potential allergens observed in commercial cereal extracts used for diagnosis, highlight the necessity to standardize and improve the diagnostic tools. Removal from exposure to the offending agents is the cornerstone of the management of grain-induced asthma. The availability of purified allergens should be very helpful for a more refined diagnosis, and new immunomodulatory treatments, including allergen immunotherapy and biological drugs, should aid in the management of patients with this disorder.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Visible-near infrared reflectance spectra are proposed for the characterization of IRMM 481 peanuts variety in comparison to powder food materials: wheat flour, milk and cocoa. Multidimensional analysis of reflectance spectra of powder samples shows a specific NIR band centred at 1200 nm that identifies peanut compared to the rest of food ingredients, regardless compaction level and temperature. Spectral range of 400-1000 nm is not robust for identification of blanched peanut. The visible range has shown to be reliable for the identification of pre-treatment and processing of unknown commercial peanut samples. A spectral index is proposed based on the combination of three wavelengths around 1200 nm that is 100% robust against pre-treatment (raw or blanched) and roasting (various temperatures and treatment duration).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In recent years, Independent Components Analysis (ICA) has proven itself to be a powerful signal-processing technique for solving the Blind-Source Separation (BSS) problems in different scientific domains. In the present work, an application of ICA for processing NIR hyperspectral images to detect traces of peanut in wheat flour is presented. Processing was performed without a priori knowledge of the chemical composition of the two food materials. The aim was to extract the source signals of the different chemical components from the initial data set and to use them in order to determine the distribution of peanut traces in the hyperspectral images. To determine the optimal number of independent component to be extracted, the Random ICA by blocks method was used. This method is based on the repeated calculation of several models using an increasing number of independent components after randomly segmenting the matrix data into two blocks and then calculating the correlations between the signals extracted from the two blocks. The extracted ICA signals were interpreted and their ability to classify peanut and wheat flour was studied. Finally, all the extracted ICs were used to construct a single synthetic signal that could be used directly with the hyperspectral images to enhance the contrast between the peanut and the wheat flours in a real multi-use industrial environment. Furthermore, feature extraction methods (connected components labelling algorithm followed by flood fill method to extract object contours) were applied in order to target the spatial location of the presence of peanut traces. A good visualization of the distributions of peanut traces was thus obtained