937 resultados para First principles


Relevância:

60.00% 60.00%

Publicador:

Resumo:

We have investigated the structural and electronic properties of p-coumaric acid, the chromophore of the photoactive yellow protein (PYP), by means of first-principles molecular dynamics based on density functional theory (DFT). We have studied the chromophore both in the vacuum and in an extended model which includes the nearest residues in the binding pocket of PYP, as derived from crystallographic data. We have characterized the ground state of the isolated chromophore in its protonated and deprotonated forms and computed the energy barrier involved in the trans to cis isomerization process around the carbon-carbon double bond. A comparison of the optimized structures of the chromophore in the vacuum and in the extended protein model, both in the trans (ground state of PYP in the dark) and cis (first light-activated intermediate) configuration, shows how the protein environment affects the chromophore in the first step of the photocycle. Our model gives an energy storage of 25 kcal/mol associated with the trans-to-cia photoisomerization. Finally, we have elucidated the nature of the electronic excitation relevant for the photochemistry of PYP by means of time-dependent DFT calculations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A new compound, IrMnSi, has been synthesized, and its crystal structure and magnetic properties have been investigated by means of neutron powder diffraction, magnetization measurements, and first-principles theory. The crystal structure is found to be of the TiNiSi type (ordered Co2P, space group Pnma). The Mn-projected electronic states are situated at the Fermi level, giving rise to metallic binding, whereas a certain degree of covalent character is observed for the chemical bond between the It and Si atoms. A cycloidal, i.e., noncollinear, magnetic structure was observed below 460 K, with the propagation vector q=[0,0,0.4530(5)] at 10 K. The magnetism is dominated by large moments on the Mn sites, 3.8 mu(B)/atom from neutron diffraction. First-principles theory reproduces the propagation vector of the experimental magnetic structure as well as the angles between the Mn moments. The calculations further result in a magnetic moment of 3.21 mu(B) for the Mn atoms, whereas the Ir and Si moments are negligible, in agreement with observations. A calculation that more directly incorporates electron-electron interactions improves the agreement between the theoretical and experimental magnetic moments. A band mechanism is suggested to explain the observed magnetic order.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A new ternary Ir-Mn-Si phase with stoichiometry Mn3IrSi has been synthesized and found to crystallize in the cubic AlAu4-type structure, space group P213 with Z=4, which is an ordered form of the beta-Mn structure. The unit cell dimension was determined by x-ray powder diffraction to a=6.4973(3) Angstrom. In addition to the crystal structure, we have determined the magnetic structure and properties using superconducting quantum interference device magnetometry and Rietveld refinements of neutron powder diffraction data. A complex noncollinear magnetic structure is found, with magnetic moments of 2.97(4)u(B) at 10 K only on the Mn atoms. The crystal structure consists of a triangular network built up by Mn atoms, on which the moments are rotated 120degrees around the triangle axes. The magnetic unit cell is the same as the crystallographic and carries no net magnetic moment. The Neel temperature was determined to be 210 K. A first-principles study, based on density functional theory in a general noncollinear formulation, reproduces the experimental results with good agreement. The observed magnetic structure is argued to be the result of frustration of antiferromagnetic couplings by the triangular geometry.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We report the magnetic and electrical characteristics of polycrystalline FeTiO3 synthesized at high pressure that is isostructural with acentric LiNbO3 (LBO). Piezoresponse force microscopy, optical second harmonic generation, and magnetometry demonstrate ferroelectricity at and below room temperature and weak ferromagnetism below ~120??K. These results validate symmetry-based criteria and first-principles calculations of the coexistence of ferroelectricity and weak ferromagnetism in a series of transition metal titanates crystallizing in the LBO structure.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present ab initio quantum chemistry calculations for elastic scattering and the radiative charge transfer reaction process and collision rates for trapped ytterbium ions immersed in a quantum degenerate rubidium vapor.
The collision of the ion (or ions) with the quasiatom is the key mechanism to transfer quantum coherences between the systems. We use first-principles
quantum chemistry codes to obtain the potential surfaces and coupling terms for the two-body interaction of Yb^+ with Rb. We find that the low energy collision has an inelastic radiative charge transfer process in agreement with recent experiments.
The charge transfer cross section agrees well with the semiclassical Langevin model at higher energies but is dominated by resonances at submillikelvin temperatures.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Space plasmas provide abundant evidence of highly energetic particle population, resulting in a long-tailed non-Maxwellian distribution. Furthermore, the first stages in the evolution of plasmas produced during laser-matter interaction are dominated by nonthermal electrons, as confirmed by experimental observation and computer simulations. This phenomenon is efficiently modelled via a kappa-type distribution. We present an overview, from first principles, of the effect of superthermality on the characteristics of electrostatic plasma waves. We rely on a fluid model for ion-acoustic excitations, employing a kappa distribution function to model excess superthermality of the electron distribution. Focusing on nonlinear excitations (solitons), in the form of solitary waves (pulses), shocks and envelope solitons, and employing standard methodological tools of nonlinear plasmadynamical analysis, we discuss the role of excess superthermality in their propagation dynamics (existence laws, stability profile), geometric characteristics and stability. Numerical simulations are employed to confirm theoretical predictions, namely in terms of the stability of electrostatic pulses, as well as the modulational stability profile of bright- and dark-type envelope solitons.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The propagation of an electromagnetic wave packet in an electron-positron plasma, in the form of coupled localized electromagnetic excitations, is investigated, from first principles. By means of the Poincare section method, a special class of superluminal localized nonlinear stationary solutions, existing along a separatrix curve, are proposed as intrinsic electromagnetic modes in a relativistic electron-positron plasma. The ratio of the envelope time scale to the carrier wave time scale of these envelope solitary waves critically depends on the carrier's phase velocity. In the strongly superluminal regime, v(ph)/c >> 1, the large difference between the envelope and carrier time scales enables us to carry out a multiscale perturbative analysis resulting in an analytical form of the solution envelope. The analytical prediction thus obtained is shown to be in agreement with the solution obtained via a direct numerical integration. Copyright (c) EPLA, 2012

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ice Ih is comprised of orientationally disordered water molecules giving rise to positional disorder of the hydrogen atoms in the hydrogen bonded network of the lattice. Here we arrive at a first principles determination of the surface energy of ice Ih and suggest that the surface of ice is significantly more proton ordered than the bulk. We predict that the proton order-disorder transition, which occurs in the bulk at similar to 72 K, will not occur at the surface at any temperature below surface melting. An order parameter which defines the surface energy of ice Ih surfaces is also identified.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Results from first-principles calculations on the subtle energetics of proton ordering in ice phases are shown only to depend on the electrostatic components of the total energy. Proton ordered ice phases can therefore be predicted using electronic structure methods or a tailored potential model. However, analysis of the electron density reveals that high order multipole components, up to hexadecapole, are needed to adequately capture total energy differences between proton ordered and disordered phases. This suggests that current potential models may be unable to reproduce the position of proton ordered ice phases in the phase diagram without extensions to describe high order electrostatics. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In recent years there have been a growing number of publications on procedures for damage detection in beams from analysing their dynamic response to the passage of a moving force. Most of this research demonstrates their effectiveness by showing that a singularity that did not appear in the healthy structure is present in the response of the damaged structure. This paper elucidates from first principles how the acceleration response can be assumed to consist of ‘static’ and ‘dynamic’ components, and where the beam has experienced a localised loss in stiffness, an additional ‘damage’ component. The combination of these components establishes how the damage singularity will appear in the total response. For a given damage severity, the amplitude of the ‘damage’ component will depend on how close the damage location is to the sensor, and its frequency content will increase with higher velocities of the moving force. The latter has implications for damage detection because if the frequency content of the ‘damage’ component includes bridge and/or vehicle frequencies, it becomes more difficult to identify damage. The paper illustrates how a thorough understanding of the relationship between the ‘static‘ and ‘damage’ components contributes to establish if damage has occurred and to provide an estimation of its location and severity. The findings are corroborated using accelerations from a planar finite element simulation model where the effects of force velocity and bridge span are examined.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Optical beams with null central intensity have potential applications in the field of atom optics. The spatial and temporal evolution of a central shadow dark hollow Gaussian (DHG) relativistic laser pulse propagating in a plasma is studied in this article for first principles. A nonlinear Schrodinger-type equation is obtained for the beam spot profile and then solved numerically to investigate the pulse propagation characteristics. As series of numerical simulations are employed to trace the profile of the focused and compressed DHG laser pulse as it propagates through the plasma. The theoretical and simulation results predict that higher-order DHG pulses show smaller divergence as they propagate and, thus, lead to enhanced energy transport. © 2013 American Physical Society.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The occurrence of rogue waves (freak waves) associated with electromagnetic pulse propagation interacting with a plasma is investigated, from first principles. A multiscale technique is employed to solve the fluid Maxwell equations describing weakly nonlinear circularly polarized electromagnetic pulses in magnetized plasmas. A nonlinear Schrödinger (NLS) type equation is shown to govern the amplitude of the vector potential. A set of non-stationary envelope solutions of the NLS equation are considered as potential candidates for the modeling of rogue waves (freak waves) in beam-plasma interactions, namely in the form of the Peregrine soliton, the Akhmediev breather and the Kuznetsov-Ma breather. The variation of the structural properties of the latter structures with relevant plasma parameters is investigated, in particular focusing on the ratio between the (magnetic field dependent) cyclotron (gyro-)frequency and the plasma frequency. © 2013 IOP Publishing Ltd.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present a first principles molecular dynamics (FPMD) study of the interaction of low-energy neutral carbon projectiles with amorphous solid water clusters at 30 K. Reactions involving the carbon atom at an initial energy of 11 and 1.7 eV with 30-molecule clusters have been investigated. Simulations indicate that the formation of hydroxymethylene, an intermediate in formaldehyde production, dominates at the higher energy. The reaction proceeds by fragmenting a water molecule, binding the carbon to the OH radical, and saturating the C valence with a hydrogen atom that can arise from the originally dissociated water molecule, or through a chain of proton transfer events. We identified several possible pathways for the formation of HCOH. When the initial collision occurs at the periphery of the cluster, we observe the formation of CO and the evaporation of water molecules. At the lower energy water fragmentation is not favorable, thus leading to the formation of weakly bound carbon-water complexes. © 2013 American Chemical Society.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The occurrence of rogue waves (freak waves) associated with electrostatic wavepacket propagation in a quantum electron-positron-ion plasma is investigated from first principles. Electrons and positrons follow a Fermi-Dirac distribution, while the ions are subject to a quantum (Fermi) pressure. A fluid model is proposed and analyzed via a multiscale technique. The evolution of the wave envelope is shown to be described by a nonlinear Schrödinger equation (NLSE). Criteria for modulational instability are obtained in terms of the intrinsic plasma parameters. Analytical solutions of the NLSE in the form of envelope solitons (of the bright or dark type) and localized breathers are reviewed. The characteristics of exact solutions in the form of the Peregrine soliton, the Akhmediev breather and the Kuznetsov-Ma breather are proposed as candidate functions for rogue waves (freak waves) within the model. The characteristics of the latter and their dependence on relevant parameters (positron concentration and temperature) are investigated. © 2014 IOP Publishing Ltd.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

First principles calculations with molecular dynamics are
utilized to simulate a simplified electrical double layer formed in the
active electric potential region during the electrocatalytic oxidation of
ethanol on Pd electrodes running in an alkaline electrolyte. Our
simulations provide an atomic level insight into how ethanol oxidation
occurs in fuel cells: New mechanisms in the presence of the simplified
electrical double layer are found to be different from the traditional
ones; through concerted-like dehydrogenation paths, both acetaldehyde
and acetate are produced in such a way as to avoid a variety of
intermediates, which is consistent with the experimental data obtained
from in situ FTIR spectroscopy. Our work shows that adsorbed OH on
the Pd electrode rather than Pd atoms is the active center for the
reactions; the dissociation of the C−H bond is facilitated by the
adsorption of an OH− anion on the surface, resulting in the formation
of water. Our calculations demonstrate that water dissociation rather than H desorption is the main channel through which
electrical current is generated on the Pd electrode. The effects of the inner Helmholtz layer and the outer Helmholtz layer are
decoupled, with only the inner Helmholtz layer being found to have a significant impact on the mechanistics of the reaction. Our
results provide atomic level insight into the significance of the simplified electrical double layer in electrocatalysis, which may be
of general importance.