836 resultados para Fine Particles
Resumo:
The ability to entrap drugs within vehicles and subsequently release them has led to new treatments for a number of diseases. Based on an associative phase separation and interfacial diffusion approach, we developed a way to prepare DNA gel particles without adding any kind of cross-linker or organic solvent. Among the various agents studied, cationic surfactants offered particularly efficient control for encapsulation and DNA release from these DNA gel particles. The driving force for this strong association is the electrostatic interaction between the two components, as induced by the entropic increase due to the release of the respective counter-ions. However, little is known about the influence of the respective counter-ions on this surfactant-DNA interaction. Here we examined the effect of different counter-ions on the formation and properties of the DNA gel particles by mixing DNA (either single- (ssDNA) or double-stranded (dsDNA)) with the single chain surfactant dodecyltrimethylammonium (DTA). In particular, we used as counter-ions of this surfactant the hydrogen sulfate and trifluoromethane sulfonate anions and the two halides, chloride and bromide. Effects on the morphology of the particles obtained, the encapsulation of DNA and its release, as well as the haemocompatibility of these particles, are presented, using the counter-ion structure and the DNA conformation as controlling parameters. Analysis of the data indicates that the degree of counter-ion dissociation from the surfactant micelles and the polar/hydrophobic character of the counter-ion are important parameters in the final properties of the particles. The stronger interaction with amphiphiles for ssDNA than for dsDNA suggests the important role of hydrophobic interactions in DNA.
Resumo:
Hepatitis A virus (HAV), the prototype of genus Hepatovirus, has several unique biological characteristics that distinguish it from other members of the Picornaviridae family. Among these, the need for an intact eIF4G factor for the initiation of translation results in an inability to shut down host protein synthesis by a mechanism similar to that of other picornaviruses. Consequently, HAV must inefficiently compete for the cellular translational machinery and this may explain its poor growth in cell culture. In this context of virus/cell competition, HAV has strategically adopted a naturally highly deoptimized codon usage with respect to that of its cellular host. With the aim to optimize its codon usage the virus was adapted to propagate in cells with impaired protein synthesis, in order to make tRNA pools more available for the virus. A significant loss of fitness was the immediate response to the adaptation process that was, however, later on recovered and more associated to a re-deoptimization rather than to an optimization of the codon usage specifically in the capsid coding region. These results exclude translation selection and instead suggest fine-tuning translation kinetics selection as the underlying mechanism of the codon usage bias in this specific genome region. Additionally, the results provide clear evidence of the Red Queen dynamics of evolution since the virus has very much evolved to re-adapt its codon usage to the environmental cellular changing conditions in order to recover the original fitness.
Resumo:
We study the problem of the advection of passive particles with inertia in a two-dimensional, synthetic, and stationary turbulent flow. The asymptotic analytical result and numerical simulations show the importance of inertial bias in collecting the particles preferentially in certain regions of the flow, depending on their density relative to that of the flow. We also study how these aggregates are affected when a simple chemical reaction mechanism is introduced through a Eulerian scheme. We find that inertia can be responsible for maintaining a stationary concentration pattern even under nonfavorable reactive conditions or destroying it under favorable ones.
Resumo:
Using the experimental data of Paret and Tabeling [Phys. Rev. Lett. 79, 4162 (1997)] we consider in detail the dispersion of particle pairs by a two-dimensional turbulent flow and its relation to the kinematic properties of the velocity field. We show that the mean square separation of a pair of particles is governed by rather rare, extreme events and that the majority of initially close pairs are not dispersed by the flow. Another manifestation of the same effect is the fact that the dispersion of an initially dense cluster is not the result of homogeneously spreading the particles within the whole system. Instead it proceeds through a splitting into smaller but also dense clusters. The statistical nature of this effect is discussed.
Resumo:
Concretes with service lives of less than 15 years and those with lives greater than 40 years were studied with petrographic microscope, scanning electron microscope, and electron microprobe to determine why these two groups of concrete exhibit such different degrees of durability under highway conditions. Coarse aggregate used in both types of concrete were from dolomite rock, but investigation revealed that dolomite aggregate in the two groups of concretes were much different in several respects. The poorly-performing aggregate is fine-grained, has numerous euhedral and subhedral dolomite rhombohedra, and has relatively high porosity. Aggregate from durable concrete is coarse-grained, with tightly interlocked crystal fabric, anhedral dolomite boundaries, and low porosity. Aggregate in short service life concrete was found to have undergone pervasive chemical reactions with the cement which produced reaction rims on the boundaries of coarse aggregate particles and in the cement region adjacent to aggregate boundaries. Textural and porosity differences are believed to be chiefly responsible for different service lives of the two groups of concrete. The basic reaction that has occurred in the short service life concretes between coarse aggregate and cement is an alkali-dolomite reaction. In the reaction dolomite from the aggregate reacts with hydroxide ions from the cement to free magnesium ions and carbonate ions, and the magnesium ions precipitate as brucite, Mg(OH)2. Simultaneously with this reaction, a second reaction occurs in which product carbonate ions react with portlandite from the cement to form calcite and hydroxide ions. Crystal growth pressures of newly formed brucite and calcite together with other processes, e.g. hydration state changes of magnesium chloride hydrates, lead to expansion of the concretes with resultant rapid deterioration. According to this model, magnesium from any source, either from reacting dolomite or from magnesium road deicers, has a major role in highway concrete deterioration. Consequently, magnesium deicers should be used with caution, and long-term testing of the effects of magnesium deicers on highway concrete should be implemented to determine their effects on durability.
Resumo:
Background: Exposure to fine particulate matter air pollutants (PM2.5) affects heart rate variability parameters, and levels of serum proteins associated with inflammation, hemostasis and thrombosis. This study investigated sources potentially responsible for cardiovascular and hematological effects in highway patrol troopers. Results: Nine healthy young non-smoking male troopers working from 3 PM to midnight were studied on four consecutive days during their shift and the following night. Sources of in-vehicle PM2.5 were identified with variance-maximizing rotational principal factor analysis of PM2.5-components and associated pollutants. Two source models were calculated. Sources of in-vehicle PM2.5 identified were 1) crustal material, 2) wear of steel automotive components, 3) gasoline combustion, 4) speed-changing traffic with engine emissions and brake wear. In one model, sources 1 and 2 collapsed to a single source. Source factors scores were compared to cardiac and blood parameters measured ten and fifteen hours, respectively, after each shift. The "speed-change" factor was significantly associated with mean heart cycle length (MCL, +7% per standard deviation increase in the factor score), heart rate variability (+16%), supraventricular ectopic beats (+39%), % neutrophils (+7%), % lymphocytes (-10%), red blood cell volume MCV (+1%), von Willebrand Factor (+9%), blood urea nitrogen (+7%), and protein C (-11%). The "crustal" factor (but not the "collapsed" source) was associated with MCL (+3%) and serum uric acid concentrations (+5%). Controlling for potential confounders had little influence on the effect estimates. Conclusion: PM2.5 originating from speed-changing traffic modulates the autonomic control of the heart rhythm, increases the frequency of premature supraventricular beats and elicits proinflammatory and pro-thrombotic responses in healthy young men. [Authors]
Resumo:
One of the most serious impediments to the continued successful use of hot-mix asphalt (HMA) pavements is rutting. The Iowa Department of Transportation has required 85% crushed particles and 75-blow Marshall mix design in an effort to prevent rutting on Interstate roadways. Relationships between the percent of crushed particles and resistance to rutting in pavement through the use of various laboratory test procedures must be developed. HMA mixtures were made with 0, 30, 60, 85, and 100% crushed gravel, crushed limestone, and crushed quartzite combined with uncrushed sand and gravel. These aggregate combinations were used with 4, 5, and 6% asphalt cement (ac). Laboratory tests included Marshall stability, resilient modulus, indirect tensile, and creep. A creep resistance factor (CRF) was developed to provide a single numeric value for creep test results. The CRF values relate well to the amount of crushed particles and the perceived resistance to rutting. The indirect tensile test is highly dependent on the ac with a small effect from the percent of crushed particles. The Marshall stability from 75-blow compaction relates well to the percent of crushed particles. The resilient modulus in some cases is highly affected by grade of ac.
Resumo:
This research project was directed at laboratory and field evaluation of sodium montmorillonite clay (Bentonite) as a dust palliative for limestone surfaced secondary roads. It was postulated that the electrically charged surfaces (negative) of the clay particles could interact with the charged surfaces (positive) of the limestone and act as a bonding agent to agglomerate fine (-#200) particulates, and also to bond the fine particulates to larger (+#200) limestone particles. One mile test roads were constructed in Tama, Appanoose, and Hancock counties in Iowa using Bentonite treatment levels (by weight of aggregate) ranging from 3.0 to 12.0%. Construction was accomplished by adding dry Bentonite to the surfacing material and then dry road mixing. The soda ash/water solution (dispersing agent) was spray applied and the treated surfacing material wet mixed by motor graders to a consistency of 2 to 3 inch slump concrete. Two motor graders working in tandem provided rapid mixing. Following wet mixing the material was surface spread and compacted by local traffic. Quantitative and qualitative periodic evaluations and testing of the test roads was conducted with respect to dust generation, crust development, roughness, and braking characteristics. As the Bentonite treatment level increased dust generation decreased. From a cost/benefit standpoint, an optimum level of treatment is about 8% (by weight of aggregate). For roads with light traffic, one application at this treatment level resulted in a 60-70% average dust reduction in the first season, 40-50% in the second season, and 20-30% in the third season. Crust development was rated at two times better than untreated control sections. No discernible trend was evident with respect to roughness. There was no evident difference in any of the test sections with respect to braking distance and braking handling characteristics, under wet surface conditions compared to the control sections. Chloride treatments are more effective in dust reduction in the short term (3-4 months). Bentonite treatment is capable of dust reduction over the long term (2-3 seasons). Normal maintenance blading operations can be used on Bentonite treated areas. Soda ash dispersed Bentonite treatment is estimated to be more than twice as cost effective per percent dust reduction than conventional chloride treatments, with respect to time. However, the disadvantage is that there is not the initial dramatic reduction in dust generation as with the chloride treatment. Although dust is reduced significantly after treatment there is still dust being generated. Video evidence indicates that the dust cloud in the Bentonite treated sections does not rise as high, or spread as wide as the cloud in the untreated section. It also settles faster than the cloud in the untreated section. This is considered important for driving safety of following traffic, and for nuisance dust invasion of residences and residential areas. The Bentonite appears to be functioning as a bonding agent.
Resumo:
In several locations of Iowa, it is becoming more difficult to produce concrete sand consistently at a reasonable cost. Both ASTM and AASHTO have specifications for concrete sands that allow a finer, poorer graded sand than Iowa specifications. The objective of the study was to develop standard mix designs to permit the use of finer graded sand for PC concrete. Three hundred cylinders were made from five sands available in the state. Based on the results of the study, the following are recommended: (1) Create another class of concrete sand by: (a) lowering the current mortar strength ratio from 1.5 to 1.3, (b) raising the allowance for the percent passing one sieve and retained on the next from 40 to 45, and (c) including a provision that 25 to 60 percent passing the number 30 sieve is required for the sand; and (2) Modify the standard paving mixes with and without fly ash for use with the finer sand as follows: (a) 8% more cement and fly ash for B-2 to B-5 mixes, (b) 7% more cement and fly ash for A-2 to A-5 mixes, and (c) 5% more cement and fly ash for C-2 to C-5 mixes and water reduced mixes.
Resumo:
A general understanding of interactions between DNA andoppositely charged compounds forms the basis for developing novelDNA-based materials, including gel particles. The association strength,which is altered by varying the chemical structure of the cationiccosolute, determines the spatial homogeneity of the gelation process,creating DNA reservoir devices and DNA matrix devices that can bedesigned to release either single- (ssDNA) or double-stranded(dsDNA) DNA. This paper reviews the preparation of DNA gelparticles using surfactants, proteins and polysaccharides. Particlemorphology, swelling/dissolution behaviour, degree of DNAentrapment and DNA release responses as a function of the nature ofthe cationic agent used are discussed. Current directions in thehaemocompatible and cytotoxic characterization of these DNA gelparticles have been also included.
Resumo:
Selostus: Seleenin myrkytysoireet juurissa