842 resultados para Failure resistances
Resumo:
The destruction mechanism in large area IGCTs (Integrated Gate Commutated Thyristors) under inductive switching conditions is analyzed in detail. The three-dimensional nature of the turn-off process in a 91mm diameter wafer is simulated with a two-dimensional representation. Simulation results show that the final destruction is caused by the uneven dynamic avalanche current distribution across the wafer. © 2011 IEEE.
Resumo:
The compressive behaviour of finite unidirectional composites with a region of misaligned reinforcement is investigated via finite element analyses. Models with and without fibre bending stiffness are compared, confirming that compressive strength is accurately predicted without modelling fibre bending stiffness for real composite components which typically have waviness defects of several millimetres wavelength. Various defect parameters are investigated. Results confirm the well-known sensitivity of compressive strength to misalignment angle, and also show that compressive strength falls rapidly with the proportion of laminate width covered by the wavy region. A simple empirical equation is proposed to model the effect of a single patch of waviness in finite specimens. Other parameters such as length and position of the wavy region are found to have a smaller effect on compressive strength. The modelling approach is finally adapted to model distributed waviness and thus determine the compressive strength of composites with realistic waviness defects. © 2011 Elsevier Ltd. All rights reserved.
Resumo:
Soil liquefaction following strong earthquakes causes extensive damage to civil engineering structures. Foundations of buildings, bridges etc can suffer excessive rotation/settlement due to liquefaction. Many of the recent earthquakes bear testimony for such damage. In this article a hypothesis that "Superstructure stiffness can determine the type of liquefaction-induced failure mechanism suffered by the foundations" is proposed. As a rider to this hypothesis, it will be argued that liquefaction will cause failure of a foundation system in a mode of failure that offers least resistance. Evidence will be offered in terms of field observations during the 921 Ji-Ji earthquake in 1999 in Taiwan and Bhuj earthquake of 2001 in India. Dynamic centrifuge test data and finite element analyses results are presented to illustrate the traditional failure mechanisms. Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.
Resumo:
Steady-state tunneling and plane-strain delamination of an H-shape crack are examined for elastic, isotropic multi layers. Both tunneling and delamination are analysed by employing linear elastic fracture mechanics within a 2D finite element framework. Failure maps are produced to reveal the sensitivity of cracking path to the relative toughness of layer and interface, and to the stiffness mismatch of layers.
Resumo:
Polymeric fibrous scaffolds have been considered as replacements for load-bearing soft tissues, because of their ability to mimic the microstructure of natural tissues. Poor toughness of fibrous materials results in failure, which is an issue of importance to both engineering and medical practice. The toughness of fibrous materials depends on the ability of the microstructure to develop toughening mechanisms. However, such toughening mechanisms are still not well understood, because the detailed evolution at the microscopic level is difficult to visualize. A novel and simple method was developed, namely, a sample-taping technique, to examine the detailed failure mechanisms of fibrous microstructures. This technique was compared with in situ fracture testing by scanning electron microscopy. Examination of three types of fibrous networks showed that two different failure modes occurred in fibrous scaffolds. For brittle cracking in gelatin electrospun scaffolds, the random network morphology around the crack tip remained during crack propagation. For ductile failure in polycaprolactone electrospun scaffolds and nonwoven fabrics, the random network deformed via fiber rearrangement, and a large number of fiber bundles formed across the region in front of the notch tip. These fiber bundles not only accommodated mechanical strain, but also resisted crack propagation and thus toughened the fibrous scaffolds. Such understanding provides insight for the production of fibrous materials with enhanced toughness.
Resumo:
Genetic variation at the serotonin transporter-linked polymorphic region (5-HTTLPR) is associated with altered amygdala reactivity and lack of prefrontal regulatory control. Similar regions mediate decision-making biases driven by contextual cues and ambiguity, for example the "framing effect." We hypothesized that individuals hemozygous for the short (s) allele at the 5-HTTLPR would be more susceptible to framing. Participants, selected as homozygous for either the long (la) or s allele, performed a decision-making task where they made choices between receiving an amount of money for certain and taking a gamble. A strong bias was evident toward choosing the certain option when the option was phrased in terms of gains and toward gambling when the decision was phrased in terms of losses (the frame effect). Critically, this bias was significantly greater in the ss group compared with the lala group. In simultaneously acquired functional magnetic resonance imaging data, the ss group showed greater amygdala during choices made in accord, compared with those made counter to the frame, an effect not seen in the lala group. These differences were also mirrored by differences in anterior cingulate-amygdala coupling between the genotype groups during decision making. Specifically, lala participants showed increased coupling during choices made counter to, relative to those made in accord with, the frame, with no such effect evident in ss participants. These data suggest that genetically mediated differences in prefrontal-amygdala interactions underpin interindividual differences in economic decision making.
Resumo:
Composite structures exhibit many different failure mechanisms, but attempts to model composite failure frequently make a priori assumptions about the mechanism by which failure will occur. Wang et al. [1] conducted compressive tests on four configurations of composite specimen manufactured with out-of-plane waviness created by ply-drop defects. There were significantly different failures for each case. Detailed finite element models of these experiments were developed which include competing failure mechanisms. The model predictions correlate well with experimental results-both qualitatively (location of failure and shape of failed specimen) and quantitatively (failure load). The models are used to identify the progression of failure during the compressive tests, determine the critical failure mechanism for each configuration, and investigate the effect of cohesive parameters upon specimen strength. This modelling approach which includes multiple competing failure mechanisms can be applied to predict failure in situations where the failure mechanism is not known in advance. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
Polymeric fibrous scaffolds have been considered as replacements for load-bearing soft tissues, because of their ability to mimic the microstructure of natural tissues. Poor toughness of fibrous materials results in failure, which is an issue of importance to both engineering and medical practice. The toughness of fibrous materials depends on the ability of the microstructure to develop toughening mechanisms. However, such toughening mechanisms are still not well understood, because the detailed evolution at the microscopic level is difficult to visualize. A novel and simple method was developed, namely, a sample-taping technique, to examine the detailed failure mechanisms of fibrous microstructures. This technique was compared with in situ fracture testing by scanning electron microscopy. Examination of three types of fibrous networks showed that two different failure modes occurred in fibrous scaffolds. For brittle cracking in gelatin electrospun scaffolds, the random network morphology around the crack tip remained during crack propagation. For ductile failure in polycaprolactone electrospun scaffolds and nonwoven fabrics, the random network deformed via fiber rearrangement, and a large number of fiber bundles formed across the region in front of the notch tip. These fiber bundles not only accommodated mechanical strain, but also resisted crack propagation and thus toughened the fibrous scaffolds. Such understanding provides insight for the production of fibrous materials with enhanced toughness. © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.