975 resultados para Faecal Occult Blood test (FOBt)
Resumo:
BACKGROUND Patients with Stevens-Johnson syndrome (SJS) or toxic epidermal necrolysis (TEN) are often exposed simultaneously to a few potentially culprit drugs. However, both the standard lymphocyte transformation tests (LTT) with proliferation as the assay end-point as well as skin tests, if done, are often negative. OBJECTIVE As provocation tests are considered too dangerous, there is an urgent need to identify the relevant drug in SJS/TEN and to improve sensitivity of tests able to identify the causative drug. METHODS Fifteen patients with SJS/TEN with the ALDEN score ≥ 6 and 18 drug-exposed controls were included. Peripheral blood mononuclear cells (PBMC) were isolated and cultured under defined conditions with drugs. LTT was compared to the following end-points: cytokine levels in cell culture supernatant, number of granzyme B secreting cells by ELISpot and intracellular staining for granulysin and IFNγ in CD3(+) CD4(+), CD3(+) CD8(+) and NKp46(+) cells. To further enhance sensitivity, the effect of IL-7/IL-15 pre-incubation of PBMC was evaluated. RESULTS Lymphocyte transformation tests was positive in only 4/15 patients (sensitivity 27%, CI: 8-55%). Similarly, with granzyme B-ELISpot culprit drugs were positive in 5/15 patients (sensitivity 33%, CI: 12-62%). The expression of granulysin was significantly induced in NKp46(+) and CD3(+) CD4(+) cells (sensitivity 40%, CI: 16-68% and 53%, CI: 27-79% respectively). Cytokine production could be demonstrated in 38%, CI: 14-68% and 43%, CI: 18-71% of patients for IL-2 and IL-5, respectively, and in 55%, CI: 23-83% for IFNγ. Pre-incubation with IL-7/IL-15 enhanced drug-specific response only in a few patients. Specificities of tested assays were in the range of 95 (CI: 80-99%)-100% (CI: 90-100%). CONCLUSIONS AND CLINICAL RELEVANCE Granulysin expression in CD3(+) CD4(+) , Granzyme B-ELISpot and IFNγ production considered together provided a sensitivity of 80% (CI: 52-96%) and specificity of 95% (80-99%). Thus, this study demonstrated that combining different assays may be a feasible approach to identify the causative drug of SJS/TEN reactions; however, confirmation on another group of patients is necessary.
Resumo:
Streptomycin is used in arboriculture to control fire blight. Using sheep as a model, multidrug-resistant bacteria in mammals were found to be selected after the intentional release of streptomycin into the environment. Escherichia coli and Staphylococcus spp. were isolated from the faeces and nasal cavities, respectively, of sheep grazing on a field sprayed with streptomycin at concentrations used in orchards (test group) and on a field without streptomycin (control group). Before the application of streptomycin, the percentage of streptomycin-resistant E. coli isolates in faeces was 15.8% in the control group and 14.7% in the test group. After the application of streptomycin, the overall number of streptomycin-resistant E. coli isolates was significantly higher in the test group (39.9%) than in the control group (22.3%). Streptomycin-resistant Staphylococcus isolates were only detected after the application of streptomycin. Streptomycin resistance was frequently associated with resistance to sulfamethoxazole, ampicillin, tetracycline and chloramphenicol and less frequently to cefotaxime in E. coli, and to tetracycline, fusidic acid and tiamulin in Staphylococcus spp. This study shows that the application of low concentrations of streptomycin on grass, as occurs during the spraying of orchards, selects for multidrug-resistant nasal and enteric bacterial flora, including extended-spectrum beta-lactamase-producing E. coli.
Resumo:
BACKGROUND: Ethyl glucuronide (EtG) and ethyl sulfate (EtS) are non-oxidative minor metabolites of ethanol. They are detectable in various body fluids shortly after initial consumption of ethanol and have a longer detection time frame than the parent compound. They are regarded highly sensitive and specific markers of recent alcohol uptake. This study evaluates the determination of EtG and EtS from dried blood spots (DBS), a simple and cost-effective sampling method that would shorten the time gap between offense and blood sampling and lead to a better reflectance of the actual impairment. METHODS: For method validation, EtG and EtS standard and quality control samples were prepared in fresh human heparinized blood and spotted on DBS cards, then extracted and measured by an LC-ESI-MS/MS method. Additionally, 76 heparinized blood samples from traffic offense cases were analyzed for EtG and EtS as whole blood and as DBS specimens. The results from these measurements were then compared by calculating the respective mean values, by a matched-paired t test, by a Wilcoxon test, and by Bland-Altman and Mountain plots. RESULTS AND DISCUSSION: Calibrations for EtG and EtS in DBS were linear over the studied calibration range. The precision and accuracy of the method met the requirements of the validation guidelines that were employed in the study. The stability of the biomarkers stored as DBS was demonstrated under different storage conditions. The t test showed no significant difference between whole blood and DBS in the determination of EtG and EtS. In addition, the Bland-Altman analysis and Mountain plot confirmed that the concentration differences that were measured in DBS specimens were not relevant.
Resumo:
Cryptococcus spp. commonly causes infection in immunocompromised hosts. Clinical presentation of cryptococcal meningoencephalitis (CM) is variable, but headache, fever and a high intracranial pressure should suggest the diagnosis. The cryptococcal antigen test is a specific and sensitive rapid test that can be performed on blood or cerebrospinal fluid. We report a case of CM in a patient with previously undetected lymphocytopenia. Because cryptococcal antigen test results were negative, diagnosis and treatment were delayed.
Resumo:
Recombinant human erythropoietin (EPO) has been successfully tested as neuroprotectant in brain injury models. The first large clinical trial with stroke patients, however, revealed negative results. Reasons are manifold and may include side-effects such as thrombotic complications or interactions with other medication, EPO concentration, penetration of the blood-brain-barrier and/or route of application. The latter is restricted to systemic application. Here we hypothesize that EPO is neuroprotective in a rat model of acute subdural hemorrhage (ASDH) and that direct cortical application is a feasible route of application in this injury type. The subdural hematoma was surgically evacuated and EPO was applied directly onto the surface of the brain. We injected NaCl, 200, 2000 or 20,000IU EPO per rat i.v. at 15min post-ASDH (400μl autologous venous blood) or NaCl, 0.02, 0.2 or 2IU per rat onto the cortical surface after removal of the subdurally infused blood t at 70min post-ASDH. Arterial blood pressure (MAP), blood chemistry, intracranial pressure (ICP), cerebral blood flow (CBF) and brain tissue oxygen (ptiO2) were assessed during the first hour and lesion volume at 2days after ASDH. EPO 20,000IU/rat (i.v.) elevated ICP significantly. EPO at 200 and 2000IU reduced lesion volume from 38.2±0.6mm(3) (NaCl-treated group) to 28.5±0.9 and 22.2±1.3mm(3) (all p<0.05 vs. NaCl). Cortical application of 0.02IU EPO after ASDH evacuation reduced injury from 36.0±5.2 to 11.2±2.1mm(3) (p=0.007), whereas 0.2IU had no effect (38.0±9.0mm(3)). The highest dose of both application routes (i.v. 20,000IU; cortical 2IU) enlarged the ASDH-induced damage significantly to 46.5±1.7 and 67.9±10.4mm(3) (all p<0.05 vs. NaCl). In order to test whether Tween-20, a solvent of EPO formulation 'NeoRecomon®' was responsible for adverse effects two groups were treated with NaCl or Tween-20 after the evacuation of ASDH, but no difference in lesion volume was detected. In conclusion, EPO is neuroprotective in a model of ASDH in rats and was most efficacious at a very low dose in combination with subdural blood removal. High systemic and topically applied concentrations caused adverse effects on lesion size which were partially due to increased ICP. Thus, patients with traumatic ASDH could be treated with cortically applied EPO but with caution concerning concentration.
Resumo:
In the last century, several mathematical models have been developed to calculate blood ethanol concentrations (BAC) from the amount of ingested ethanol and vice versa. The most common one in the field of forensic sciences is Widmark's equation. A drinking experiment with 10 voluntary test persons was performed with a target BAC of 1.2 g/kg estimated using Widmark's equation as well as Watson's factor. The ethanol concentrations in the blood were measured using headspace gas chromatography/flame ionization and additionally with an alcohol Dehydrogenase (ADH)-based method. In a healthy 75-year-old man a distinct discrepancy between the intended and the determined blood ethanol concentration was observed. A blood ethanol concentration of 1.83 g/kg was measured and the man showed signs of intoxication. A possible explanation for the discrepancy is a reduction of the total body water content in older people. The incident showed that caution is advised when using the different mathematical models in aged people. When estimating ethanol concentrations, caution is recommended with calculated results due to potential discrepancies between mathematical models and biological systems
Resumo:
Reproducing the characteristics and the functional responses of the blood-brain barrier (BBB) in vitro represents an important task for the research community, and would be a critical biotechnological breakthrough. Pharmaceutical and biotechnology industries provide strong demand for inexpensive and easy-to-handle in vitro BBB models to screen novel drug candidates. Recently, it was shown that canonical Wnt signaling is responsible for the induction of the BBB properties in the neonatal brain microvasculature in vivo. In the present study, following on from earlier observations, we have developed a novel model of the BBB in vitro that may be suitable for large scale screening assays. This model is based on immortalized endothelial cell lines derived from murine and human brain, with no need for co-culture with astrocytes. To maintain the BBB endothelial cell properties, the cell lines are cultured in the presence of Wnt3a or drugs that stabilize β-catenin, or they are infected with a transcriptionally active form of β-catenin. Upon these treatments, the cell lines maintain expression of BBB-specific markers, which results in elevated transendothelial electrical resistance and reduced cell permeability. Importantly, these properties are retained for several passages in culture, and they can be reproduced and maintained in different laboratories over time. We conclude that the brain-derived endothelial cell lines that we have investigated gain their specialized characteristics upon activation of the canonical Wnt pathway. This model may be thus suitable to test the BBB permeability to chemicals or large molecular weight proteins, transmigration of inflammatory cells, treatments with cytokines, and genetic manipulation.
Resumo:
Background: The cerebral network that is active during rest and is deactivated during goal-oriented activity is called the default mode network (DMN). It appears to be involved in self-referential mental activity. Atypical functional connectivity in the DMN has been observed in schizophrenia. One hypothesis suggests that pathologically increased DMN connectivity in schizophrenia is linked with a main symptom of psychosis, namely, misattribution of thoughts. Methods: A resting-state pseudocontinuous arterial spin labeling (ASL) study was conducted to measure absolute cerebral blood flow (CBF) in 34 schizophrenia patients and 27 healthy controls. Using independent component analysis (ICA), the DMN was extracted from ASL data. Mean CBF and DMN connectivity were compared between groups using a 2-sample t test. Results: Schizophrenia patients showed decreased mean CBF in the frontal and temporal regions (P < .001). ICA demonstrated significantly increased DMN connectivity in the precuneus (x/y/z = -16/-64/38) in patients than in controls (P < .001). CBF was not elevated in the respective regions. DMN connectivity in the precuneus was significantly correlated with the Positive and Negative Syndrome Scale scores (P < .01). Conclusions: In schizophrenia patients, the posterior hub-which is considered the strongest part of the DMN-showed increased DMN connectivity. We hypothesize that this increase hinders the deactivation of the DMN and, thus, the translation of cognitive processes from an internal to an external focus. This might explain symptoms related to defective self-monitoring, such as auditory verbal hallucinations or ego disturbances.
Resumo:
The most common test to identify latent tuberculosis is the tuberculin skin test that detects T cell responses of delayed type hypersensitivity type IV. Since it produces false negative reactions in active tuberculosis or in high-risk persons exposed to tuberculosis patients as shown in this report, we studied antibody profiles to explain the anergy of such responses in high-risk individuals without active infection. Our results showed that humoral immunity against tuberculin, regardless of the result of the tuberculin skin test is important for protection from active tuberculosis and that the presence of high antibody titers is a more reliable indicator of infection latency suggesting that latency can be based on the levels of antibodies together with in vitro proliferation of peripheral blood mononuclear cells in the presence of the purified protein derivative. Importantly, anti-tuberculin IgG antibody levels mediate the anergy described herein, which could also prevent reactivation of disease in high-risk individuals with high antibody titers. Such anti-tuberculin IgG antibodies were also found associated with blocking and/or stimulation of in vitro cultures of PBMC with tuberculin. In this regard, future studies need to establish if immune responses to Mycobacterium tuberculosis can generate a broad spectrum of reactions either toward Th1 responses favoring stimulation by cytokines or by antibodies and those toward diminished responses by Th2 cytokines or blocking by antibodies; possibly involving mechanisms of antibody dependent protection from Mtb by different subclasses of IgG.
Resumo:
OBJECTIVES: To detect the influence of blood contamination (BC) on the bond strength (BS) of a self-etching bonding system (SES) to enamel and dentine. METHODS: 25 human molars were longitudinally sectioned on the mesio-distal axis in order to obtain 50 specimens, which were embedded in acrylic resin. At first, the specimens were ground to expose a flat surface of enamel, and a bond strength test was performed. Afterwards, the samples were ground again in order to obtain a flat surface of dentine. Ten groups (total: n=100) were assigned according to substrate (enamel and dentine), step in the bonding sequence when contamination occurred (before the acidic primer and after the bonding resin), and contamination treatment (dry or rinse and dry procedure). Fresh human blood was introduced either before or after SES application (Clearfil SE Bond) and treated with air drying, or by rinsing and drying following application. Composite resin (Filtek Z-250,3M ESPE) was applied as inverted, truncated cured cones that were debonded in tension. RESULTS: The mean tensile BS values (MPa) for enamel/dentine were 19.4/23.0 and 17.1/10.0 for rinse-and-dry treatment (contamination before and after SES, respectively); while the measurements for the dry treatment, 16.2/23.3 and 0.0/0.0 contamination before and after SES, respectively. CONCLUSIONS: It was determined that blood contamination impaired adhesion to enamel and dentine when it occurred after bond light curing. Among the tested contamination treatments, the rinse-and-dry treatment produced the highest bond strength with BC after SES application, but it was not sufficient to recover the BS in the contamination-free group.
Resumo:
BACKGROUND Preservation of myocardial perfusion during general anesthesia is likely important in patients at risk for perioperative cardiac complications. Data related to the influence of general anesthesia on the normal myocardial circulation are limited. In this study, we investigated myocardial microcirculatory responses to pharmacological vasodilation and sympathetic stimulation during general anesthesia with sevoflurane in healthy humans immediately before surgical stimulation. METHODS Six female and 7 male subjects (mean age 43 years, range 28-61) were studied at baseline while awake and during the administration of 1 minimum alveolar concentration sevoflurane. Using myocardial contrast echocardiography, myocardial blood flow (MBF) and microcirculatory variables were assessed at rest, during adenosine-induced hyperemia, and after cold pressor test-induced sympathetic stimulation. MBF was calculated from the relative myocardial blood volume multiplied by its exchange frequency (β) divided by myocardial tissue density (ρT), which was set at 1.05 g·mL(-1). RESULTS During sevoflurane anesthesia, MBF at rest was similar to baseline values (1.05 ± 0.28 vs 1.05 ± 0.32 mL·min(-1)·g(-1); P = 0.98; 95% confidence interval [CI], -0.18 to 0.18). Myocardial blood volume decreased (P = 0.0044; 95% CI, 0.01-0.04) while its exchange frequency (β) increased under sevoflurane anesthesia when compared with baseline. In contrast, hyperemic MBF was reduced during anesthesia compared with baseline (2.25 ± 0.5 vs 3.53 ± 0.7 mL·min(-1)·g(-1); P = 0.0003; 95% CI, 0.72-1.84). Sympathetic stimulation during sevoflurane anesthesia resulted in a similar MBF compared to baseline (1.53 ± 0.53 and 1.55 ± 0.49 mL·min(-1)·g(-1); P = 0.74; 95% CI, -0.47 to 0.35). CONCLUSIONS In otherwise healthy subjects who are not subjected to surgical stimulation, MBF at rest and after sympathetic stimulation is preserved during sevoflurane anesthesia despite a decrease in myocardial blood volume. However, sevoflurane anesthesia reduces hyperemic MBF, and thus MBF reserve, in these subjects.
Resumo:
The value of cerebrospinal fluid (CSF) lactate level and CSF/blood glucose ratio for the identification of bacterial meningitis following neurosurgery was assessed in a retrospective study. During a 3-year period, 73 patients fulfilled the inclusion criteria and could be grouped by preset criteria in one of three categories: proven bacterial meningitis (n = 12), presumed bacterial meningitis (n = 14), and nonbacterial meningeal syndrome (n = 47). Of 73 patients analyzed, 45% were treated with antibiotics and 33% with steroids at the time of first lumbar puncture. CSF lactate values (cutoff, 4 mmol/L), in comparison with CSF/blood glucose ratios (cutoff, 0.4), were associated with higher sensitivity (0.88 vs. 0.77), specificity (0.98 vs. 0.87), and positive (0.96 vs. 0.77) and negative (0.94 vs. 0.87) predictive values. In conclusion, determination of the CSF lactate value is a quick, sensitive, and specific test to identify patients with bacterial meningitis after neurosurgery.
Resumo:
BACKGROUND AND OBJECTIVE Phenotyping cocktails use a combination of cytochrome P450 (CYP)-specific probe drugs to simultaneously assess the activity of different CYP isoforms. To improve the clinical applicability of CYP phenotyping, the main objectives of this study were to develop a new cocktail based on probe drugs that are widely used in clinical practice and to test whether alternative sampling methods such as collection of dried blood spots (DBS) or saliva could be used to simplify the sampling process. METHODS In a randomized crossover study, a new combination of commercially available probe drugs (the Basel cocktail) was tested for simultaneous phenotyping of CYP1A2, CYP2B6, CYP2C9, CYP2C19, CYP2D6 and CYP3A4. Sixteen subjects received low doses of caffeine, efavirenz, losartan, omeprazole, metoprolol and midazolam in different combinations. All subjects were genotyped, and full pharmacokinetic profiles of the probe drugs and their main metabolites were determined in plasma, dried blood spots and saliva samples. RESULTS The Basel cocktail was well tolerated, and bioequivalence tests showed no evidence of mutual interactions between the probe drugs. In plasma, single timepoint metabolic ratios at 2 h (for CYP2C19 and CYP3A4) or at 8 h (for the other isoforms) after dosing showed high correlations with corresponding area under the concentration-time curve (AUC) ratios (AUC0-24h parent/AUC0-24h metabolite) and are proposed as simple phenotyping metrics. Metabolic ratios in dried blood spots (for CYP1A2 and CYP2C19) or in saliva samples (for CYP1A2) were comparable to plasma ratios and offer the option of minimally invasive or non-invasive phenotyping of these isoforms. CONCLUSIONS This new combination of phenotyping probe drugs can be used without mutual interactions. The proposed sampling timepoints have the potential to facilitate clinical application of phenotyping but require further validation in conditions of altered CYP activity. The use of DBS or saliva samples seems feasible for phenotyping of the selected CYP isoforms.
Resumo:
The major multidrug transporter P-glycoprotein (Pgp) contributes to the barrier function of several tissues and organs, including the brain. In a subpopulation of Collies and seven further dog breeds, a 4 base pair deletion has been described in the Pgp-encoding MDR1 gene. This deletion results in the absence of a functional form of Pgp and loss of its protective function. Severe intoxication with the Pgp substrate ivermectin has been attributed to the genetically determined lack of Pgp. An allele-specific polymerase chain reaction (PCR)-based screening method has been developed to detect the mutant allele and to determine if a dog is homozygous or heterozygous for the mutation. Based on this validation, the allele-specific PCR proved to be a robust, reproducible and specific tool, allowing rapid determination of the MDR1 genotype of dogs of at risk breeds using blood samples or buccal swabs.
Resumo:
Background: Access to hepatitis B viral load (VL) testing is poor in sub-Saharan Africa (SSA) due toeconomic and logistical reasons.Objectives: To demonstrate the feasibility of testing dried blood spots (DBS) for hepatitis B virus (HBV)VL in a laboratory in Lusaka, Zambia, and to compare HBV VLs between DBS and plasma samples.Study design: Paired plasma and DBS samples from HIV-HBV co-infected Zambian adults were analyzedfor HBV VL using the COBAS AmpliPrep/COBAS TaqMan HBV test (Version 2.0) and for HBV genotypeby direct sequencing. We used Bland-Altman analysis to compare VLs between sample types and bygenotype. Logistic regression analysis was conducted to assess the probability of an undetectable DBSresult by plasma VL.Results: Among 68 participants, median age was 34 years, 61.8% were men, and median plasma HBV VLwas 3.98 log IU/ml (interquartile range, 2.04–5.95). Among sequenced viruses, 28 were genotype A1 and27 were genotype E. Bland–Altman plots suggested strong agreement between DBS and plasma VLs. DBSVLs were on average 1.59 log IU/ml lower than plasma with 95% limits of agreement of −2.40 to −0.83 logIU/ml. At a plasma VL ≥2,000 IU/ml, the probability of an undetectable DBS result was 1.8% (95% CI:0.5–6.6). At plasma VL ≥20,000 IU/ml this probability reduced to 0.2% (95% CI: 0.03–1.7).