953 resultados para FUNCTION PREDICTION
Resumo:
Electrical conductivity versus dopant ionic radius studies in zirconia- and ceria-based, solid oxide fuel cell (SOFC) electrolyte systems have shown that oxygen-ion conductivity is highest when the host and dopant ions are similar in size [J. Am. Ceram. Soc. 48 (1965) 286; Solid State Ionics 37 (1989) 67; Solid State Ionics 5 (1981) 547]. Under these conditions, it is thought that the conduction paths within the crystal lattice become less distorted [Solid State Ionics 8 (1983) 201]. In this study, binary ZrO2-M2O3 unit cells were expanded, via the partial substitution of Ce+4 for Zr+4 into the lattice, in an attempt to identify new, ternary, zirconia/ceria-based electrolyte systems with enhanced electrical conductivity. The compositions Zr0.75Ce0.08M0.17O1.92 (M = Nd, Sm, Gd, Dy, Ho, Y, Yb, Sc) were prepared using traditional solid state techniques. Bulk phase characterisation and precise lattice parameter measurements were performed with X-ray diffraction techniques. Four-probe DC conductivity measurements between 400 and 900 degreesC showed that the dopant-ion radius influenced electrical conductivity. The conductivity versus dopant-ion radius trends previously observed in zirconia-based, binary systems are clearly apparent in the ternary systems investigated in this study. The addition of ceria was found to have a negative influence on the electrical conductivity over the temperature range 400-900 degreesC. It is suggested that distortion of the oxygen-ion conduction path by the presence of the larger M+3 and Ce+4 species (relative to Zr+4) is the reason for the decreasing electrical conductivity as a function of increasing dopant size and ceria addition, respectively. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Articulatory patterns and nasal resonance were assessed before and 6 months after orthognathic reconstruction surgery in five patients with dentofacial deformities. Perceptual and physiological assessments showed disorders of nasality and articulatory function preoperatively, two patients being hyponasal, and one hypernasal. Four patients had mild articulatory deficits, and four had reduced maximal lip or tongue pressures. Operation resulted in different patterns of change. Nasality deteriorated in three patients and articulatory precision and intelligibility improved in only one patient and showed no change in the other four. Operation improved interlabial pressures in three patients, while its impact on tongue pressures varied, being improved in one case, deteriorating in one, and remaining unchanged in the other three. The variability in the results highlights the need for routine assessment of speech and resonance before and after orthognathic reconstruction. (C) 2002 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Science Ltd. All rights reserved.
Resumo:
Background Diastolic dysfunction induced by ischemia may alter transmitral blood flow, but this reflects global ventricular function, and pseudonormalization may occur with increased preload. Tissue Doppler may assess regional diastolic function and is relatively load-independent, but limited data exist regarding its application to stress testing. We sought to examine the stress response of regional diastolic parameters to dobutomine echocardiography (DbE). Methods Sixty-three patients underwent study with DbE: 20 with low probability of coronary artery disease (CAD) and 43 with CAD who underwent angiography. A standard DbE protocol was used, and segments were categorized as ischemic, scar, or normal. Color tissue Doppler was acquired at baseline and peak stress, and waveforms in the basal and mid segments were used to measure early filling (Em), late filling (Am), and E deceleration time. Significant CAD was defined by stenoses >50% vessel diameter. Results Diastolic parameters had limited feasibility because of merging of Em and Am waves at high heart rates and limited reproducibility. Nonetheless, compared with normal segments, segments subtended with significant stenoses showed a lower Em velocity at rest (6.2 +/- 2.6 cm/s vs 4.8 +/- 2.2 cm/s, P < .0001) and peak (7.5 +/- 4.2 cm/s vs 5.1 +/- 3.6 cm/s, P < .0001), Abnormal segments also showed a shorter E deceleration time (51 +/- 27 ms vs 41 +/- 27 ms, P = .0001) at base and peak. No changes were documented in Am. The same pattern was seen with segments identified as ischemic with wall motion score. However, in the absence of ischemia, segments of patients with left ventricular hypertrophy showed a lower Em velocity, with blunted Em responses to stress. Conclusion Regional diastolic function is sensitive to ischemia. However, a number of practical limitations limit the applicability of diastolic parameters for the quantification of stress echocardiography.
Resumo:
A new algorithm has been developed for smoothing the surfaces in finite element formulations of contact-impact. A key feature of this method is that the smoothing is done implicitly by constructing smooth signed distance functions for the bodies. These functions are then employed for the computation of the gap and other variables needed for implementation of contact-impact. The smoothed signed distance functions are constructed by a moving least-squares approximation with a polynomial basis. Results show that when nodes are placed on a surface, the surface can be reproduced with an error of about one per cent or less with either a quadratic or a linear basis. With a quadratic basis, the method exactly reproduces a circle or a sphere even for coarse meshes. Results are presented for contact problems involving the contact of circular bodies. Copyright (C) 2002 John Wiley Sons, Ltd.
Resumo:
Stress echocardiography has been shown to improve the diagnosis of coronary artery disease in the presence of hypertension, but its value in prognostic evaluation is unclear. We sought to determine whether stress echocardiography could be used to predict mortality in 2363 patients with hypertension, who were followed for up to 10 years (mean 4.0+/-1.8) for death and revascularization. Stress echocardiograms were normal in 1483 patients (63%), 16% had resting left ventricular (LV) dysfunction alone, and 21% had ischemia. Abnormalities were confined to one territory in 489 patients (21%) and to multiple territories in 365 patients (15%). Cardiac death was less frequent among the patients able to exercise than among those undergoing dobutamine echocardiography (4% versus 7%, P<0.001). The risk of death in patients with a negative stress echocardiogram was <1% per year. Ischemia identified by stress echocardiography was an independent predictor of mortality in those able to exercise (hazard ratio 2.21, 95% confidence intervals 1.10 to 4.43, P=0.0001) as well as those undergoing dobutamine echo (hazard ratio 2.39, 95% confidence intervals 1.53 to 3.75, P=0.0001); other predictors were age, heart failure, resting LV dysfunction, and the Duke treadmill score. In stepwise models replicating the sequence of clinical evaluation, the results of stress echocardiography added prognostic power to models based on clinical and stress-testing variables. Thus, the results of stress echocardiography are an independent predictor of cardiac death in hypertensive patients with known or suspected coronary artery disease, incremental to clinical risks and exercise results.
Resumo:
This theoretical note describes an expansion of the behavioral prediction equation, in line with the greater complexity encountered in models of structured learning theory (R. B. Cattell, 1996a). This presents learning theory with a vector substitute for the simpler scalar quantities by which traditional Pavlovian-Skinnerian models have hitherto been represented. Structured learning can be demonstrated by vector changes across a range of intrapersonal psychological variables (ability, personality, motivation, and state constructs). Its use with motivational dynamic trait measures (R. B. Cattell, 1985) should reveal new theoretical possibilities for scientifically monitoring change processes (dynamic calculus model; R. B. Cattell, 1996b), such as encountered within psycho therapeutic settings (R. B. Cattell, 1987). The enhanced behavioral prediction equation suggests that static conceptualizations of personality structure such as the Big Five model are less than optimal.
Resumo:
The four-link chain of the motor unit represents the contemporary end-point of some two millennia of evolving knowledge in neuroscience. The paradigm shift in neuromuscular epistemology occurred in the mid-17th century. In 1666, the newly graduated Dutch doctor, Jan Swammerdam (1637-1680) published his former investigations of dissected nerve-muscle preparations. These experiments comprised the quantum leap from observation and speculation, to that of experimentation in the field of neuroanatomy and neurophysiology. In what he termed 'A Curious Experiment' he also described the phenomenon of intrinsic muscle excitability - I cannot observe that the muscle in the living animal ever absolutely ceases from all motion. Eighty years later (1752), von Haller demonstrated experimentally that irritability (contractility) was an intrinsic property of all muscular tissue; and distinguished between the sensibility of nerve impulses and the irritability of muscular contraction. This experimental progression from Swammerdam to von Haller culminated in 1850, when Claude Bernard's studies in experimental pharmacology confirmed that muscle was a functional unit, independent of any electrical innervation via its supplying nerve. This account comprises an audit of Swammerdam's work in the perspective of neuromuscular knowledge. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
This paper outlines research on the processes taking place within the coal mineral matter at high temperatures and development of the relationship between ash fusion temperatures (AFT) and phase equilibria of the coal ash slags. A new thermodynamic database for the Al-Ca-Fe-O-Si system developed by the author was used in conjunction with the thermodynamic computer package F*A*C*T for these purposes. In addition, high temperature experimental studies were undertaken that involved heat treatment and quenching of the ash cones followed by the analyses using different techniques. The study provided new information on the processes taking place during AFT test and demonstrated the validity of the AFTs predictions with F*A*C*T. Examples of practical applications of the AFT prediction method are given in the paper. The results of this study are important not only for the AFT predictions, but also in general for the application of phase equilibrium science to the characterisation of the coal mineral matter interactions at high temperature. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
This study utilized recently developed microbead technology to remove natural killer (NK) cells from peripheral blood mononuclear cell (PBMC) preparations to determine the effect of acute exercise on T-lymphocyte function, independent of changes in lymphocyte subpopulations. Twelve well-trained male runners completed a 60-min exercise trial at 95% ventilatory threshold and a no-exercise control trial. Six blood samples were taken at each session: before exercise, midexercise, immediately after exercise, and 30, 60, and 90 min after exercise. Isolated PBMC and NK cell-depleted PBMC were stimulated with the mitogen phytohemagglutinin. Cellular proliferation was assessed by using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide dye uptake. In the PBMC cultures, there was a significantly lower mitogen response to phytohemagglutinin in exercise compared with the control condition immediately postexercise. There were no significant differences between the control and exercise conditions in NK cell-depleted PBMC cultures or in the responses adjusted for the percentage of CD3 cells. The present findings do not support the view that T-lymphocyte function is reduced after exercise.
Resumo:
Here we consider the role of abstract models in advancing our understanding of movement pathology. Models of movement coordination and control provide the frameworks necessary for the design and interpretation of studies of acquired and developmental disorders. These models do not however provide the resolution necessary to reveal the nature of the functional impairments that characterise specific movement pathologies. In addition, they do not provide a mapping between the structural bases of various pathologies and the associated disorders of movement. Current and prospective approaches to the study and treatment of movement disorders are discussed. It is argued that the appreciation of structure-function relationships, to which these approaches give rise, represents a challenge to current models of interlimb coordination, and a stimulus for their continued development. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Plant toxins are substances produced and secreted by plants to defend themselves against predators. In a broad sense, this includes all substances that have a toxic effect on targeted organisms, whether they are microbes, other plants, insects, or higher animals. Plant toxins have a diverse range of structures, from small organic molecules through to proteins. This review gives an overview of the various classes of plant toxins but focuses on an interesting class of protein-based plant toxins containing a cystine knot motif. This structural motif confers exceptional stability on proteins containing it and is associated with a wide range of biological activities. The biological activities and structural stability offer many potential applications in the pharmaceutical and agricultural fields. One particularly exciting prospect is in the use of protein-based plant toxins as molecular scaffolds for displaying pharmaceutically important bioactivities. Future applications of plant toxins are likely to involve genetic engineering techniques and molecular pharming approaches.
Resumo:
Recent research support sLocke's (1976) model of facet satisfaction in which the range of affect of objectively defined facet descriptions is moderated by subjective evaluations of facet importance (McFarlin & Rice, 1992). This study examined the utility of Locke's moderated model of face t satisfaction for the prediction of organizationally important global measures of job satisfaction. A large dataset of two groups of workers allowed testing over different time periods and across a broad range of satisfaction measures. The hypothesis derived from Locke's model, that global satisfaction would represent a linear function of facet satisfaction (i.e., facet description x facet importance), was not supported. Instead, a simple (have-want) discrepancy model (operationalized as facet description) provided the most consistent set of predictors. The results suggests that workers, when providing global measures of job satisfaction, may use cognitive heuristics to reduce the complexity of facet description x importance calculations. The implications of these data for Locke's model and directions for future research are outlined.