926 resultados para FLEXURAL STRENGHT


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mestrado em Engenharia Química - Ramo Otimização Energética na Indústria Química

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introdução: É reconhecida a importância do ligamento cruzado anterior (LCA) no funcionamento normal do joelho. Em caso de rotura ligamentar, nomeadamente em desportos com marcada solicitação dos movimentos de rotação do joelho, é justificada a necessidade de reconstrução do LCA na maioria dos casos. Objetivo (s): Avaliar a influência do tipo de enxerto na reconstrução do ligamento cruzado anterior na força muscular isocinética, assim como na funcionalidade e sintomas após 6 meses. Métodos: Estudo transversal analítico, constituído por 20 indivíduos voluntários do sexo masculino, que haviam sido submetidos a uma ligamentoplastia do cruzado anterior, pelo mesmo cirurgião, seguido de uma intervenção individualizada por um fisioterapeuta. Em 10 indivíduos, o procedimento cirúrgico foi realizado com enxerto do tendão rotuliano (grupo OTO), e nos restantes 10 com enxerto do semitendinoso e gracilis (grupo STG). Como forma de avaliar a Força Muscular Isocinética (Peak Torque, Trabalho Total Muscular, ratio Isquiotibiais/Quadricipite), foi utilizado o Dinamómetro Isocinético Biodex. A avaliação foi efectuada apenas aos 6 meses após o procedimento cirúrgico. Para observação da funcionalidade, amplitude de movimento e sintomas, utilizou-se o questionário International Knee Documentation Committee (IKDC). Resultados: Foi possível observar que entre os grupos apenas se observaram diferenças significativas no peak torque de extensão a 180º no membro não lesado (p=0,019). Contudo, foi observada uma tendência para o grupo OTO apresentar um maior défice no peak torque e trabalho total muscular em extensão. Comparativamente ao membro contra-lateral, o membro lesado apresentou valores significativamente inferiores na maioria das variáveis ( p < 0,05). Conclusão: Após 6 meses de pós-cirúrgico com reabilitação de fisioterapia, não foi possível apontar qual o enxerto que garante uma melhor recuperação da força muscular. Aos 6 meses, ambos os grupos ainda apresentaram limitações musculares, quando comparados com o lado contra-lateral. Relativamente ao rácio isquiotibiais/quadricípite, assim como no IKDC, não se observaram diferenças entre os dois tipos de enxertos.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rehabilitation is becoming more and more usual in the construction sector in Portugal. The introduction of newer construction materials and technical know-how of integrating different materials for achieving desired engineering goals is an important step to the development of the sector. Wood industry is also getting more and more adapted to composite technologies with the introduction of the so called “highly engineered wood products” and with the use of modification treatments. This work is an attempt to explain the viability of using stainless steel and glass fibre reinforced polymer (GFRP) as reinforcements in wood beams. This thesis specifically focuses on the flexural behaviour of Portuguese Pine unmodified and modified wood beams. Two types of modification were used: 1,3-dimethylol-4,5- dihydroxyethyleneurea (DMDHEU) resin and amid wax. The behaviour of the material was analysed with a nonlinear model. The latter model simulates the behaviour of the reinforced wood beams under flexural loading. Small-scale beams (1:15) were experimented in flexural bending and the experimental results obtained were compared with the analytical model results. The experiments confirm the viability of the reinforcing schemes and the working procedures. Experimental results showed fair agreement with the nonlinear model. A strength increase between 15% and 80% was achieved. Stiffness increased by 40% to 50% in beams reinforced with steel but no significant increase was achieved with the glass fibre reinforcement.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Glass fibre-reinforced plastics (GFRP), nowadays commonly used in the construction, transportation and automobile sectors, have been considered inherently difficult to recycle due to both the cross-linked nature of thermoset resins, which cannot be remoulded, and the complex composition of the composite itself, which includes glass fibres, polymer matrix and different types of inorganic fillers. Hence, to date, most of the thermoset based GFRP waste is being incinerated or landfilled leading to negative environmental impacts and additional costs to producers and suppliers. With an increasing awareness of environmental matters and the subsequent desire to save resources, recycling would convert an expensive waste disposal into a profitable reusable material. In this study, the effect of the incorporation of mechanically recycled GFRP pultrusion wastes on flexural and compressive behaviour of polyester polymer mortars (PM) was assessed. For this purpose, different contents of GFRP recyclates (0%, 4%, 8% and 12%, w/w), with distinct size grades (coarse fibrous mixture and fine powdered mixture), were incorporated into polyester PM as sand aggregates and filler replacements. The effect of the incorporation of a silane coupling agent was also assessed. Experimental results revealed that GFRP waste filled polymer mortars show improved mechanical behaviour over unmodified polyester based mortars, thus indicating the feasibility of GFRP waste reuse as raw material in concrete-polymer composites.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Se efectuaron mediciones de TS (Fuerza de Blanco, Target Strenght) durante los 108 lances de comprobación de ecotrazos realizados por el BIC Humboldt en el marco del Crucero 9808-09 de Evaluación Hidroacústica de Recursos Pelágicos. Se consideran para el análisis únicamente aquellos lances donde más del 90% de la captura perteneció a una sola especie. Los factores b20 de la ecuación de TS (TS=20 log L - b20) que han sido determinados, las cuales deberán ser considerados como provisionales, son las siguientes: Pez cinta (Trichiurus lepturus) = 70,95 (120 kHz); Vinciguerria o pez linterna (Vinciguerria lucetia pacifici) = 83,29 (120 kHz); Samasa (Anchoa nasus) = 86,57 (120 kHz); Caballa (Scomber japonicus) = 83,09 (120 kHz); Pez cinta (Trichiurus lepturus) = 71,41 (38 kHz); y Vinciguerria o pez linterna (Vinciguerria lucetia pacifici)= 82,04 (38kHz).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Short fiber reinforced thermoplastics have generated much interest these days since fibrous materials tend to increase both mechanical and thermal properties, such as tensile strength, flexural strength, flexural modulus, heat deflection temperature, creep resistance, and some times impact strength of thermoplastics. If the matrix and reinforcement are both based on polymers the composite are recyclable. The rheological behavior of recyclable composites based on nylon fiber reinforced polypropylene (PP) is reported in this paper. The rheological behavior was evaluated both using a capillary rheometer and a torque rheometer. The study showed that the composite became pseudoplastic with fiber content and hence fiber addition did not affect processing adversely at higher shear rates. The torque rheometer data resembled that obtained from the capillary rheometer. The energy of mixing and activation energy of mixing also did not show much variation from that of PP alone.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Investigations on the fracture behaviour of polymer blends is the topic of this thesis. The blends selected are PP/HDPE and PS/HIPS. PP/HDPE blend is chosen due to its commercial importance and PS/HIPS blend is selected to study the transition from brittle fracture to ductile fracture.PP/HDPE blends were prepared at different compositions by melt blending at 180°C and fracture failure process was investigated by conducting notch sensitivity test and tensile test at different strain rates. The effects of two types of modifiers (particulate and elastomer) on the fracture behaviour and notch sensitivity of PP/HDPE blends were studied. The modifiers used are calcium carbonate, a hard particulate filler commonly used in plastics and Ethylene Propylene Diene Monomer (EPDM). They were added in 2%, 4% and 6% by weight of the blends.The study shows that the mechanical properties of PP/HDPE blends can be optimized by selecting proper blend compositions. The selected modifiers are found to alter and improve the fracture behaviour and notch sensitivity of the blends. Particulate fillers like calcium carbonate can be used for making the mechanical behaviour more stable at the various blend compositions. The resistance to notch sensitivity of the blends is found to be marginally lower in the presence of calcium carbonate. The elastomeric modifier EPDM produces a better stability of the mechanical behaviour. A low concentration of EPDM is sufficient to effect such a change. EPDM significantly improves the resistance to notch sensitivity of the blends. The study shows that judicious selection of modifiers can improve the fracture behaviour and notch sensitivity of PP/HDPE blends and help these materials to be used for critical applications.For investigating the transition in fracture behaviour and failure modes, PS/HIPS blends were selected. The blends were prepared by melt mixing followed by injection moulding to prepare the specimens for conducting tensile, impact and flexure tests. These tests were used to simulate the various conditions which promote failure.The tensile behaviour of unnotched and notched PS/HIPS blend samples were evaluated at slow speeds. Tensile strengths and moduli were found to increase at the higher testing speed for all the blend combinations whereas maximum strain at break was found to decrease. For a particular speed of testing, the tensile strength and modulus show only a very slight decrease as HIPS content is increased up to about 40%. However, there is a drastic decrease on increasing the HIPS content thereafter.The maximum strain at break shows only a very slight change up to about 40% HIPS content and thereafter shows a remarkable increase. The notched specimens also follow a comparable trend even though the notch sensitivity is seen high for PS rich blends containing up to 40% HIPS. The notch sensitivity marginally decreases with increase in HIPS content. At the same time, it is found to increase with the increase in strain rate. It is observed that blends containing more than 40% HIPS fail in ductile mode.The impact characteristics of PSIHIPS blends studied were impact strength, the energy absorbed by the test specimen and impact toughness. Remarkable increase in impact strength is observed as HIPS content in the blend exceeds 40%. The energy absorbed by the test specimens and the impact toughness also show a comparable trend.Flexural testing which helps to characterize the load bearing capacity was conducted on PS/HIPS blend samples at the two different testing speeds of 5mmlmin and 10 mm/min. The flexural strength increases with increase in testing speed for all the blend compositions. At both the speeds, remarkable reduction in flexural strength is observed as HIPS content in the blend exceeds 40%. The flexural strain and flexural energy absorbed by the specimens are found to increase with increase in HIPS content. At both the testing speeds, brittle fracture is observed for PS rich blends whereas HIPS rich blends show ductile mode of failure.Photoelastic investigations were conducted on PS/HIPS blend samples to analyze their failure modes. A plane polariscope with a broad source of light was utilized for the study. The coloured isochromatic fringes formed indicate the presence of residual stress concentration in the blend samples. The coverage made by the fringes on the test specimens varies with the blend composition and it shows a reducing trend with the increase in HIPS content. This indicates that the presence of residual stress is a contributing factor leading to brittle fracture in PS rich blends and this tendency gradually falls with increase in HIPS content and leads to their ductile mode of failure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this investigation is to study the effectiveness of isora fibre as reinforcement material in short and long forms, for unsaturated polyester and epoxy resins.Studies on the optimization of fibre length and fibre loading of randomly oriented isora-polyester composite are described.The salient features of the alkali treatment of short isora fibre on the properties of randomly oriented isora-polyester composite are outlined in this thesis.The effect of surface modification of the hydrophilic isora fibre by different chemical treatments on the properties of randomly oriented isora-polyester composite is outlined.The properties of oriented and randomly oriented isora fibre reinforced epoxy composites with special reference to the effect of fibre loading are reported and also the dynamic mechanical properties ofthe oriented and randomly oriented isora-polyester and isora-epoxy composites are presented and the water absorption kinetics of oriented and randomly oriented isora-polyester composites and oriented isoraepoxy composites are given. The effect of hot air oven aging on the tensile and flexural properties of oriented isora-polyester and isora-epoxy composites are also reported in this thesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The thesis describes studies on development of short Nylon-6 fibre composites based on rubber-toughened polystyrene (PS). Toughening was done using natural rubber (NR), styrene-butadiene rubber (SBR) and whole tyre reclaim (WTR). The composites were prepared by melt mixing in an internal mixer at 170 oC. It was found that the optimum blend ratio was 85/15 for PS/NR, 90/10 for PS/SBR and 90/22 for PS/WTR blends. The effect of dynamic vulcanisation on 85/15 PS/NR and 90/10 PS/SBR blends using dicumyl peroxide (DCP) at various concentrations were also studied. The dynamic crosslinking improved the tensile properties, flexural properties, impact strength and dynamic mechanical properties of both the blends. The effect of unmodified and resorcinol formaldehyde latex (RFL)-coated short Nylon-6 fibres on the mechanical properties, morphology and dynamic mechanical properties of 85/15 PS/NR, 90/10 PS/SBR and 90/22 PS/WTR blends were studied. Fibre loading was varied from 0 to 3 wt.%. For 85/15 PS/NR blend, there was a significant enhancement in tensile properties, flexural properties and impact strength with 1 wt.% of both unmodified and RFL-coated fibres. Dynamic mechanical analysis revealed that the storage modulus at room temperature was maximum at 1 wt.% fiber loading for both composites. The surface functionality of the fiber was improved by giving alkali treatment. Maleic anhydride-grafted-polystyrene (MA-g-PS) was prepared and used as a compatibiliser. The effect of MA-g-PS on the composites was investigated with respect to mechanical properties, morphology and dynamic mechanical properties. The compatibiliser loading was varied from 0 to 2 wt.%. The properties were enhanced significantly in the case of treated and untreated fibre composites at a compatibiliser loading of 0.75 wt.%. SEM analysis confirmed better bonding between the fibre and the matrix. Dynamic mechanical studies showed that the storage modulus at room temperature improved for treated fibre composites in the presence of compatibiliser. In the case of 90/10 PS/SBR composites, the addition of short Nylon-6 fibres at 1 wt.% loading improved the tensile modulus, flexural properties and impact strength while the tensile strength was marginally reduced. The surface treated fibers along with compatibiliser at 0.5 wt.% improved the tensile properties, flexural properties and impact strength. DMA reveale that the storage modulus at room temperature was better for composites containing untreated fibre and the compatibiliser. In the case of 90/22 PS/WTR blends, 1 wt.% unmodified fibre and 0.5 wt.% RFL-coated fibres improved tensile modulus, flexural properties and impact strength. Tensile strength was improved marginally. The surface treatment of Nylon fibre and the addition of compatibiliser at 0.5 wt.% enhanced the tensile properties, flexural properties and impact strength. The dynamic mechanical analysis showed that the storage modulus at room temperature was better for untreated fibre composites in conjunction with the compatibiliser. The thermal stability of PS/NR was studied by TGA. Thermal stability of the blends improved with dynamic vulcanisation and with the incorporation of RFL-coated Nylon fibres. The untreated and partially hydrolyzed fibre composites in conjunction with the compatibiliser enhanced the thermal stability. Kinetic studies showed that the degradation of the blends and the composites followed first order kinetics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A/though steel is most commonly used as a reinforcing material in concrete due to its competitive cost and favorable mechanical properties, the problem of corrosion of steel rebars leads to a reduction in life span of the structure and adds to maintenance costs. Many techniques have been developed in recent past to reduce corrosion (galvanizing, epoxy coating, etc.) but none of the solutions seem to be viable as an adequate solution to the corrosion problem. Apart from the use of fiber reinforced polymer (FRP) rebars, hybrid rebars consisting of both FRP and steel are also being tried to overcome the problem of steel corrosion. This paper evaluates the performance of hybrid rebars as longitudinal reinforcement in normal strength concrete beams. Hybrid rebars used in this study essentially consist of glass fiber reinforced polymer (GFRP) strands of 2 mm diameter wound helically on a mild steel core of 6 mm diameter. GFRP stirrups have been used as shear reinforcement. An attempt has been made to evaluate the flexural and shear performance of beams having hybrid rebars in normal strength concrete with and without polypropylene fibers added to the concrete matrix

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Glass fiber reinforced polymer (GFRP) rebars have been identified as an alternate construction material for reinforcing concrete during the last decade primarily due to its strength and durability related characteristics. These materials have strength higher than steel, but exhibit linear stress–strain response up to failure. Furthermore, the modulus of elasticity of GFRP is significantly lower than that of steel. This reduced stiffness often controls the design of the GFRP reinforced concrete elements. In the present investigation, GFRP reinforced beams designed based on limit state principles have been examined to understand their strength and serviceability performance. A block type rotation failure was observed for GFRP reinforced beams, while flexural failure was observed in geometrically similar control beams reinforced with steel rebars. An analytical model has been proposed for strength assessment accounting for the failure pattern observed for GFRP reinforced beams. The serviceability criteria for design of GFRP reinforced beams appear to be governed by maximum crack width. An empirical model has been proposed for predicting the maximum width of the cracks. Deflection of these GFRP rebar reinforced beams has been predicted using an earlier model available in the literature. The results predicted by the analytical model compare well with the experimental data

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Graphene has captured the attention of scientific community due to recently emerging high performance applications. Hence, studying its reinforcing effects on epoxy resin is a significant step. In this study, microwave exfoliated reduced graphene oxide (MERGO) was prepared from natural graphite for subsequent fabrication of epoxy nanocomposites using triethylenetetramine (TETA) as a curing agent via insitu polymerization. Thermogravimetric analysis (TGA), X-ray diffraction (XRD), Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR), C13 NMR spectroscopy, X-ray photoelectron spectroscopy (XPS) and ultravioletevisible (UVevis) spectroscopy were employed to confirm the simultaneous reduction and exfoliation of graphene oxide. The reinforcing effect of MERGO on epoxy resin was explored by investigating its static mechanical properties and dynamic mechanical analysis (DMA) at MERGO loadings of 0 to 0.5 phr. The micro-structure of epoxy/MERGO nanocomposites was investigated using scanning electron microscope (SEM), transmission electron microscope (TEM) and XRD techniques. The present work reports an enhancement of 32%, 103% and 85% in tensile, impact and flexural strength respectively of epoxy by the addition of even 0.25 phr MERGO. At this loading elastic and flexural moduli also increased by 10% and 65%, respectively. Single-edge-notch three-point-Bending (SEN-TPB) fracture toughness (KIC) measurements were carried out where a 63% increase was observed by the introduction of 0.25 phr MERGO. The interfacial interactions brought about by graphene also benefited the dynamic mechanical properties to a large extent in the form of a significant enhancement in storage modulus and slightly improved glass transition temperature. Considerable improvements were also detected in dielectric properties. The epoxy nanocomposite also attained an ac conductivity of 10 5 S/m and a remarkable increase in dielectric constant. The simple and cost effective way of graphene synthesis for the fabrication of epoxy/MERGO nanocomposites may be extended to the preparation of other MERGO based polymer nanocomposites. This remarkable class of materials has thrown open enormous opportunities for developing conductive adhesives and in microelectronics

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Upgrading two widely used standard plastics, polypropylene (PP) and high density polyethylene (HDPE), and generating a variety of useful engineering materials based on these blends have been the main objective of this study. Upgradation was effected by using nanomodifiers and/or fibrous modifiers. PP and HDPE were selected for modification due to their attractive inherent properties and wide spectrum of use. Blending is the engineered method of producing new materials with tailor made properties. It has the advantages of both the materials. PP has high tensile and flexural strength and the HDPE acts as an impact modifier in the resultant blend. Hence an optimized blend of PP and HDPE was selected as the matrix material for upgradation. Nanokaolinite clay and E-glass fibre were chosen for modifying PP/HDPE blend. As the first stage of the work, the mechanical, thermal, morphological, rheological, dynamic mechanical and crystallization characteristics of the polymer nanocomposites prepared with PP/HDPE blend and different surface modified nanokaolinite clay were analyzed. As the second stage of the work, the effect of simultaneous inclusion of nanokaolinite clay (both N100A and N100) and short glass fibres are investigated. The presence of nanofiller has increased the properties of hybrid composites to a greater extent than micro composites. As the last stage, micromechanical modeling of both nano and hybrid A composite is carried out to analyze the behavior of the composite under load bearing conditions. These theoretical analyses indicate that the polymer-nanoclay interfacial characteristics partially converge to a state of perfect interfacial bonding (Takayanagi model) with an iso-stress (Reuss IROM) response. In the case of hybrid composites the experimental data follows the trend of Halpin-Tsai model. This implies that matrix and filler experience varying amount of strain and interfacial adhesion between filler and matrix and also between the two fillers which play a vital role in determining the modulus of the hybrid composites.A significant observation from this study is that the requirement of higher fibre loading for efficient reinforcement of polymers can be substantially reduced by the presence of nanofiller together with much lower fibre content in the composite. Hybrid composites with both nanokaolinite clay and micron sized E-glass fibre as reinforcements in PP/HDPE matrix will generate a novel class of high performance, cost effective engineering material.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The research in the area of geopolymer is gaining momentum during the past 20 years. Studies confirm that geopolymer concrete has good compressive strength, tensile strength, flexural strength, modulus of elasticity and durability. These properties are comparable with OPC concrete.There are many occasions where concrete is exposed to elevated temperatures like fire exposure from thermal processor, exposure from furnaces, nuclear exposure, etc.. In such cases, understanding of the behaviour of concrete and structural members exposed to elevated temperatures is vital. Even though many research reports are available about the behaviour of OPC concrete at elevated temperatures, there is limited information available about the behaviour of geopolymer concrete after exposure to elevated temperatures. A preliminary study was carried out for the selection of a mix proportion. The important variable considered in the present study include alkali/fly ash ratio, percentage of total aggregate content, fine aggregate to total aggregate ratio, molarity of sodium hydroxide, sodium silicate to sodium hydroxide ratio, curing temperature and curing period. Influence of different variables on engineering properties of geopolymer concrete was investigated. The study on interface shear strength of reinforced and unreinforced geopolymer concrete as well as OPC concrete was also carried out. Engineering properties of fly ash based geopolymer concrete after exposure to elevated temperatures (ambient to 800 °C) were studied and the corresponding results were compared with those of conventional concrete. Scanning Electron Microscope analysis, Fourier Transform Infrared analysis, X-ray powder Diffractometer analysis and Thermogravimetric analysis of geopolymer mortar or paste at ambient temperature and after exposure to elevated temperature were also carried out in the present research work. Experimental study was conducted on geopolymer concrete beams after exposure to elevated temperatures (ambient to 800 °C). Load deflection characteristics, ductility and moment-curvature behaviour of the geopolymer concrete beams after exposure to elevated temperatures were investigated. Based on the present study, major conclusions derived could be summarized as follows. There is a definite proportion for various ingredients to achieve maximum strength properties. Geopolymer concrete with total aggregate content of 70% by volume, ratio of fine aggregate to total aggregate of 0.35, NaOH molarity 10, Na2SiO3/NaOH ratio of 2.5 and alkali to fly ash ratio of 0.55 gave maximum compressive strength in the present study. An early strength development in geopolymer concrete could be achieved by the proper selection of curing temperature and the period of curing. With 24 hours of curing at 100 °C, 96.4% of the 28th day cube compressive strength could be achieved in 7 days in the present study. The interface shear strength of geopolymer concrete is lower to that of OPC concrete. Compared to OPC concrete, a reduction in the interface shear strength by 33% and 29% was observed for unreinforced and reinforced geopolymer specimens respectively. The interface shear strength of geopolymer concrete is lower than ordinary Portland cement concrete. The interface shear strength of geopolymer concrete can be approximately estimated as 50% of the value obtained based on the available equations for the calculation of interface shear strength of ordinary portland cement concrete (method used in Mattock and ACI). Fly ash based geopolymer concrete undergoes a high rate of strength loss (compressive strength, tensile strength and modulus of elasticity) during its early heating period (up to 200 °C) compared to OPC concrete. At a temperature exposure beyond 600 °C, the unreacted crystalline materials in geopolymer concrete get transformed into amorphous state and undergo polymerization. As a result, there is no further strength loss (compressive strength, tensile strength and modulus of elasticity) in geopolymer concrete, whereas, OPC concrete continues to lose its strength properties at a faster rate beyond a temperature exposure of 600 °C. At present no equation is available to predict the strength properties of geopolymer concrete after exposure to elevated temperatures. Based on the study carried out, new equations have been proposed to predict the residual strengths (cube compressive strength, split tensile strength and modulus of elasticity) of geopolymer concrete after exposure to elevated temperatures (upto 800 °C). These equations could be used for material modelling until better refined equations are available. Compared to OPC concrete, geopolymer concrete shows better resistance against surface cracking when exposed to elevated temperatures. In the present study, while OPC concrete started developing cracks at 400 °C, geopolymer concrete did not show any visible cracks up to 600 °C and developed only minor cracks at an exposure temperatureof 800 °C. Geopolymer concrete beams develop crack at an early load stages if they are exposed to elevated temperatures. Even though the material strength of the geopolymer concrete does not decrease beyond 600 °C, the flexural strength of corresponding beam reduces rapidly after 600 °C temperature exposure, primarily due to the rapid loss of the strength of steel. With increase in temperature, the curvature at yield point of geopolymer concrete beam increases and thereby the ductility reduces. In the present study, compared to the ductility at ambient temperature, the ductility of geopolymer concrete beams reduces by 63.8% at 800 °C temperature exposure. Appropriate equations have been proposed to predict the service load crack width of geopolymer concrete beam exposed to elevated temperatures. These equations could be used to limit the service load on geopolymer concrete beams exposed to elevated temperatures (up to 800 °C) for a predefined crack width (between 0.1mm and 0.3 mm) or vice versa. The moment-curvature relationship of geopolymer concrete beams at ambient temperature is similar to that of RCC beams and this could be predicted using strain compatibility approach Once exposed to an elevated temperature, the strain compatibility approach underestimates the curvature of geopolymer concrete beams between the first cracking and yielding point.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aufgrund ihrer Vorteile hinsichtlich Dauerhaftigkeit und Bauwerkssicherheit ist in Deutschland seit 1998 die externe Vorspannung in Hohlkastenbrücken zur Regelbauweise geworden. Durch Verwendung der austauschbaren externen Vorspannung verspricht man sich im Brückenbau weitere Verbesserungen der Robustheit und damit eine Verlängerung der Lebensdauer. Trotz des besseren Korrosionsschutzes im Vergleich zur internen Vorspannung mit Verbund sind Schäden nicht völlig auszuschließen. Um die Vorteile der externen Vorspannung zu nutzen, ist daher eine periodische Überwachung der Spanngliedkräfte, z. B. während der Hauptprüfung des Bauwerks, durchzuführen. Für die Überwachung der Spanngliedkräfte bei Schrägseilbrücken haben sich die Schwingungsmessmethoden als wirtschaftlich und leistungsfähig erwiesen. Für die Übertragung der Methode auf den Fall der externen Vorspannung, wo kürzere Schwingungslängen vorliegen, waren zusätzliche Untersuchungen hinsichtlich der effektiven Schwingungslänge, der Randbedingungen sowie der effektiven Biegesteifigkeit erforderlich. Im Rahmen der vorliegenden Arbeit wurde das Modellkorrekturverfahren, basierend auf der iterativen Anpassung eines F.E.-Modells an die identifizierten Eigenfrequenzen und Eigenformen des Spanngliedes, für die Bestimmung der Spanngliedkräfte verwendet. Dieses Verfahren ermöglicht die Berücksichtigung der Parameter (Schwingungslänge, Randbedingungen und effektive Biegesteifigkeit) bei der Identifikation der effektiven Spanngliedkräfte. Weiterhin ist eine Modellierung jeder beliebigen Spanngliedausbildung, z. B. bei unterschiedlichen Querschnitten in den Verankerungs- bzw. Umlenkbereichen, gewährleistet. Zur Anwendung bei der Ermittlung der Spanngliedkräfte wurde eine spezielle Methode, basierend auf den besonderen dynamischen Eigenschaften der Spannglieder, entwickelt, bei der die zuvor genannten Parameter innerhalb jedes Iterationsschrittes unabhängig korrigiert werden, was zur Robustheit des Identifikationsverfahrens beiträgt. Das entwickelte Verfahren ist in einem benutzerfreundlichen Programmsystem implementiert worden. Die erzielten Ergebnisse wurden mit dem allgemeinen Identifikationsprogramm UPDATE_g2 verglichen; dabei ist eine sehr gute Übereinstimmung festgestellt worden. Beim selbst entwickelten Verfahren wird die benötigte Rechenzeit auf ca. 30 % reduziert [100 sec à 30 sec]. Es bietet sich daher für die unmittelbare Auswertung vor Ort an. Die Parameteridentifikationsverfahren wurden an den Spanngliedern von insgesamt sechs Brücken (vier unterschiedliche Spannverfahren) angewendet. Die Anzahl der getesteten Spannglieder beträgt insgesamt 340. Die Abweichung zwischen den durch Schwingungs-messungen identifizierten und gemessenen (bei einer Brücke durch eine Abhebekontrolle) bzw. aufgebrachten Spanngliedkräften war kleiner als 3 %. Ferner wurden die Auswirkungen äußerer Einflüsse infolge Temperaturschwankungen und Verkehr bei den durchgeführten Messungen untersucht. Bei der praktischen Anwendung sind Besonderheiten aufgetreten, die durch die Verwendung des Modellkorrekturverfahrens weitgehend erfasst werden konnten. Zusammenfassend lässt sich sagen, dass die Verwendung dieses Verfahrens die Genauigkeit im Vergleich mit den bisherigen Schwingungsmessmethoden beachtlich erhöht. Ferner wird eine Erweiterung des Anwendungsbereiches auch auf Spezialfälle (z. B. bei einem unplanmäßigen Anliegen) gewährleistet.