987 resultados para Experiment data
Resumo:
A first result of the search for ν ( )μ( ) → ν ( )e( ) oscillations in the OPERA experiment, located at the Gran Sasso Underground Laboratory, is presented. The experiment looked for the appearance of ν ( )e( ) in the CNGS neutrino beam using the data collected in 2008 and 2009. Data are compatible with the non-oscillation hypothesis in the three-flavour mixing model. A further analysis of the same data constrains the non-standard oscillation parameters θ (new) and suggested by the LSND and MiniBooNE experiments. For large values (>0.1 eV(2)), the OPERA 90% C.L. upper limit on sin(2)(2θ (new)) based on a Bayesian statistical method reaches the value 7.2 × 10(−3).
Resumo:
The OPERA neutrino experiment is designed to perform the first observation of neutrino oscillations in direct appearance mode in the νμ→ντ channel, via the detection of the τ-leptons created in charged current ντ interactions. The detector, located in the underground Gran Sasso Laboratory, consists of an emulsion/lead target with an average mass of about 1.2 kt, complemented by electronic detectors. It is exposed to the CERN Neutrinos to Gran Sasso beam, with a baseline of 730 km and a mean energy of 17 GeV. The observation of the first ντ candidate event and the analysis of the 2008-2009 neutrino sample have been reported in previous publications. This work describes substantial improvements in the analysis and in the evaluation of the detection efficiencies and backgrounds using new simulation tools. The analysis is extended to a sub-sample of 2010 and 2011 data, resulting from an electronic detector-based pre-selection, in which an additional ντ candidate has been observed. The significance of the two events in terms of a νμ→ντ oscillation signal is of 2.40 σ.
Resumo:
In spring 2012 CERN provided two weeks of a short bunch proton beam dedicated to the neutrino velocity measurement over a distance of 730 km. The OPERA neutrino experiment at the underground Gran Sasso Laboratory used an upgraded setup compared to the 2011 measurements, improving the measurement time accuracy. An independent timing system based on the Resistive Plate Chambers was exploited providing a time accuracy of ∼1 ns. Neutrino and anti-neutrino contributions were separated using the information provided by the OPERA magnetic spectrometers. The new analysis profited from the precision geodesy measurements of the neutrino baseline and of the CNGS/LNGS clock synchronization. The neutrino arrival time with respect to the one computed assuming the speed of light in vacuum is found to be δtν≡TOFc−TOFν=(0.6±0.4 (stat.)±3.0 (syst.)) ns and δtν¯≡TOFc−TOFν¯=(1.7±1.4 (stat.)±3.1 (syst.)) ns for νμ and ν¯μ, respectively. This corresponds to a limit on the muon neutrino velocity with respect to the speed of light of −1.8×10−6<(vν−c)/c<2.3×10−6 at 90% C.L. This new measurement confirms with higher accuracy the revised OPERA result.
Resumo:
Results of a search for new phenomena in events with an energetic photon and large missing transverse momentum in proton-proton collisions at root s = 7 TeV are reported. Data collected by the ATLAS experiment at the LHC corresponding to an integrated luminosity of 4.6 fb(-1) are used. Good agreement is observed between the data and the standard model predictions. The results are translated into exclusion limits on models with large extra spatial dimensions and on pair production of weakly interacting dark matter candidates.
Resumo:
A search for squarks and gluinos in final states containing jets, missing transverse momentum and no high-p(T) electrons or muons is presented. The data represent the complete sample recorded in 2011 by the ATLAS experiment in 7 TeV proton-proton collisions at the Large Hadron Collider, with a total integrated luminosity of 4.7 fb(-1). No excess above the Standard Model background expectation is observed. Gluino masses below 860 GeV and squark masses below 1320 GeV are excluded at the 95% confidence level in simplified models containing only squarks of the first two generations, a gluino octet and a massless neutralino, for squark or gluino masses below 2 TeV, respectively. Squarks and gluinos with equal masses below 1410 GeV are excluded. In minimal supergravity/constrained minimal supersymmetric Standard Model models with tan beta = 10, A(0) = 0 and mu > 0, squarks and gluinos of equal mass are excluded for masses below 1360 GeV. Constraints are also placed on the parameter space of supersymmetric models with compressed spectra. These limits considerably extend the region of supersymmetric parameter space excluded by previous measurements with the ATLAS detector.
Resumo:
A first result of the search for nu(mu)->nu(e) oscillations in the OPERA experiment, located at the Gran Sasso Underground Laboratory, is presented. The experiment looked for the appearance of nu(e) in the CNGS neutrino beam using the data collected in 2008 and 2009. Data are compatible with the non-oscillation hypothesis in the three-flavour mixing model. A further analysis of the same data constrains the non-standard oscillation parameters theta(new) and Delta m(new)(2) suggested by the LSND and MiniBooNE experiments. For large Delta m(new)(2) values (>0.1 eV(2)), the OPERA 90% C.L. upper limit on sin(2)(2 theta(new)) based on a Bayesian statistical method reaches the value 7.2 x 10(-3).
Resumo:
Studies of the spin and parity quantum numbers of the Higgs boson are presented, based on protonproton collision data collected by the ATLAS experiment at the LHC. The Standard Model spin-parity J(P) = 0(+) hypothesis is compared with alternative hypotheses using the Higgs boson decays H -> gamma gamma, H -> ZZ* -> 4l and H -> WW* -> l nu l nu, as well as the combination of these channels. The analysed dataset corresponds to an integrated luminosity of 20.7 fb(-1) collected at a centre-of-mass energy of root s = 8 TeV. For the H -> ZZ* -> 4l decay mode the dataset corresponding to an integrated luminosity of 4.6 fb(-1) collected at root s = 7 TeV is included. The data are compatible with the Standard Model J(P) = 0+ quantum numbers for the Higgs boson, whereas all alternative hypotheses studied in this Letter, namely some specific J(P) = 0(-), 1(+), 1(-), 2(+) models, are excluded at confidence levels above 97.8%. This exclusion holds independently of the assumptions on the coupling strengths to the Standard Model particles and in the case of the J(P) = 2(+) model, of the relative fractions of gluon-fusion and quark-antiquark production of the spin-2 particle. The data thus provide evidence for the spin-0 nature of the Higgs boson, with positive parity being strongly preferred.
Resumo:
A search is presented for new particles decaying to large numbers (7 to greater or equal to 10) of jets, missing transverse momentum and no isolated electrons or muons. This analysis uses 20.3/fb of pp collision data at sqrt(s)=8 TeV collected by the ATLAS experiment at the Large Hadron Collider. The sensitivity of the search is enhanced by considering the number of b-tagged jets and the scalar sum of masses of large-radius jets in an event. No evidence is found for physics beyond the Standard Model. The results are interpreted in the context of various simplified supersymmetry-inspired models where gluinos are pair produced, as well as a mSUGRA/CMSSM model.
Resumo:
We present new experimental constraints on the elastic, spin-dependent WIMP-nucleon cross section using recent data from the XENON100 experiment, operated in the Laboratori Nazionali del Gran Sasso in Italy. An analysis of 224.6 live days x 34 kg of exposure acquired during 2011 and 2012 revealed no excess signal due to axial-vector WIMP interactions with Xe-129 and Xe-131 nuclei. This leads to the most stringent upper limits on WIMP-neutron cross sections for WIMP masses above 6 GeV/c(2), with a minimum cross section of 3.5 x 10(-40) cm(2) at a WIMP mass of 45 GeV/c(2), at 90% confidence level.
Resumo:
The hadronic light-by-light contribution to the anomalous magnetic moment of the muon was recently analyzed in the framework of dispersion theory, providing a systematic formalism where all input quantities are expressed in terms of on-shell form factors and scattering amplitudes that are in principle accessible in experiment. We briefly review the main ideas behind this framework and discuss the various experimental ingredients needed for the evaluation of one- and two-pion intermediate states. In particular, we identify processes that in the absence of data for doubly-virtual pion–photon interactions can help constrain parameters in the dispersive reconstruction of the relevant input quantities, the pion transition form factor and the helicity partial waves for γ⁎γ⁎→ππ.
Resumo:
High throughput discovery of ligand scaffolds for target proteins can accelerate development of leads and drug candidates enormously. Here we describe an innovative workflow for the discovery of high affinity ligands for the benzodiazepine-binding site on the so far not crystallized mammalian GABAA receptors. The procedure includes chemical biology techniques that may be generally applied to other proteins. Prerequisites are a ligand that can be chemically modified with cysteine-reactive groups, knowledge of amino acid residues contributing to the drug-binding pocket, and crystal structures either of proteins homologous to the target protein or, better, of the target itself. Part of the protocol is virtual screening that without additional rounds of optimization in many cases results only in low affinity ligands, even when a target protein has been crystallized. Here we show how the integration of functional data into structure-based screening dramatically improves the performance of the virtual screening. Thus, lead compounds with 14 different scaffolds were identified on the basis of an updated structural model of the diazepam-bound state of the GABAA receptor. Some of these compounds show considerable preference for the α3β2γ2 GABAA receptor subtype.
Resumo:
The Multi-GNSS Experiment (MGEX) of the International GNSS Service (IGS) aims at the data collection and analysis of all available satellite navigation systems. In particular the new global and regional satellite navigation systems are of interest, i.e., the European Galileo, the Chinese BeiDou, the Japanese QZSS as well as satellite based augmentation systems. This article analyzes the orbit and clock quality of the Galileo products of four MGEX analysis centers for a common time period of 20 weeks. Orbit comparisons of the individual analysis centers have a consistency at the 5–30 cm level. Day boundary discontinuities range from 4 to 28 cm whereas 2-day orbit fit RMS values vary between 1 and 7 cm. The accuracy evaluated by satellite laser ranging residuals is on the one decimeter level with a systematic bias of about −5 cm for all analysis centers. In addition, systematic errors on the decimeter level related to solar radiation pressure mismodeling are present in all orbit products. Due to the correlation of radial orbit errors with the clock parameters, these errors are also visible as a bump in the Allan deviation of the Galileo satellite clocks at the orbital frequency.
Resumo:
The Antihydrogen Experiment: Gravity, Interferometry, Spectroscopy (AEgIS) experiment is conducted by an international collaboration based at CERN whose aim is to perform the first direct measurement of the gravitational acceleration of antihydrogen in the local field of the Earth, with Δg/g = 1% precision as a first achievement. The idea is to produce cold (100 mK) antihydrogen ( ¯H) through a pulsed charge exchange reaction by overlapping clouds of antiprotons, from the Antiproton Decelerator (AD) and positronium atoms inside a Penning trap. The antihydrogen has to be produced in an excited Rydberg state to be subsequently accelerated to form a beam. The deflection of the antihydrogen beam can then be measured by using a moir´e deflectometer coupled to a position sensitive detector to register the impact point of the anti-atoms through the vertex reconstruction of their annihilation products. After being approved in late 2008, AEgIS started taking data in a commissioning phase in 2012. This paper presents an outline of the experiment with a brief overview of its physics motivation and of the state-of-the-art of the g measurement on antimatter. Particular attention is given to the current status of the emulsion-based position detector needed to measure the ¯H sag in AEgIS.
Resumo:
A search for squarks and gluinos in final states containing high-pT jets, missing transverse momentum and no electrons or muons is presented. The data were recorded in 2012 by the ATLAS experiment in √s = 8TeV proton-proton collisions at the Large Hadron Collider, with a total integrated luminosity of 20.3 fb−1. Results are interpreted in a variety of simplified and specific supersymmetry-breaking models assuming that R-parity is conserved and that the lightest neutralino is the lightest supersymmetric particle. An exclusion limit at the 95% confidence level on the mass of the gluino is set at 1330GeV for a simplified model incorporating only a gluino and the lightest neutralino. For a simplified model involving the strong production of first- and second-generation squarks, squark masses below 850GeV (440GeV) are excluded for a massless lightest neutralino, assuming mass degenerate (single light-flavour) squarks. In mSUGRA/CMSSM models with tan β = 30, A0 = −2m0 and μ > 0, squarks and gluinos of equal mass are excluded for masses below 1700GeV. Additional limits are set for non-universal Higgs mass models with gaugino mediation and for simplified models involving the pair production of gluinos, each decaying to a top squark and a top quark, with the top squark decaying to a charm quark and a neutralino. These limits extend the region of supersymmetric parameter space excluded by previous searches with the ATLAS detector.
Resumo:
This paper presents a study of the performance of the muon reconstruction in the analysis of proton–proton collisions at √s = 7TeV at theLHC, recorded by the ATLAS detector in 2010. This performance is described in terms of reconstruction and isolation efficiencies and momentum resolutions for different classes of reconstructed muons. The results are obtained from an analysis of J/ψ meson and Z boson decays to dimuons, reconstructed from a data sample corresponding to an integrated luminosity of 40 pb−1. The measured performance is compared to Monte Carlo predictions and deviations from the predicted performance are discussed.