975 resultados para Excited states


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Photophysics and photochemistry of pesticides triadimefon {1-(4-chlorophenoxy)-3,3-dimethyl-1-(1H-1,2,4-triazol-1-yl) butanone} and triadimenol {1-(4-chlorophenoxy)-3,3-dimethyl-1-(1H-1,2,4-triazol-1-yl) butan-2-ol} were studied in the solution. The excited singlet states were identified by comparison with the absorption spectra of adequate model compounds, in several solvents. The first excited singlet state of triadimefon is an n, pi* state localized on the carbonyl group, while higher excited states are localized on the chlorophenoxy group and have a pi, pi* character. The lowest singlet state of triadimenol is pi, pi* state, since a methoxyl group replaces the carbonyl group of triadimefon. Triadimefon shows a weak fluorescence from the n, pi* state, upon excitation at both 310 and 250 nm. This suggests a fast intramolecular energy transfer process from the localized pi, pi* state of the chlorophenoxy group to the n, pi* state of the carbonyl group. The photodegradation quantum yield of triadimefon in cyclohexane at 313 run is 0.022. Triadimenol is photostable, under the same conditions. Two major photodegradation products of triadimefon and triadimenol were identified: 4-chlorophenol and 1,2,4-triazole. 4-Chlorophenoxyl radicals were detected by flash photolysis, suggesting a homolytic cleavage of the C-O bond of the asymmetric carbon. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This thesis presents studies of the role of disorder in non-equilibrium quantum systems. The quantum states relevant to dynamics in these systems are very different from the ground state of the Hamiltonian. Two distinct systems are studied, (i) periodically driven Hamiltonians in two dimensions, and (ii) electrons in a one-dimensional lattice with power-law decaying hopping amplitudes. In the first system, the novel phases that are induced from the interplay of periodic driving, topology and disorder are studied. In the second system, the Anderson transition in all the eigenstates of the Hamiltonian are studied, as a function of the power-law exponent of the hopping amplitude.

In periodically driven systems the study focuses on the effect of disorder in the nature of the topology of the steady states. First, we investigate the robustness to disorder of Floquet topological insulators (FTIs) occurring in semiconductor quantum wells. Such FTIs are generated by resonantly driving a transition between the valence and conduction band. We show that when disorder is added, the topological nature of such FTIs persists as long as there is a gap at the resonant quasienergy. For strong enough disorder, this gap closes and all the states become localized as the system undergoes a transition to a trivial insulator.

Interestingly, the effects of disorder are not necessarily adverse, disorder can also induce a transition from a trivial to a topological system, thereby establishing a Floquet Topological Anderson Insulator (FTAI). Such a state would be a dynamical realization of the topological Anderson insulator. We identify the conditions on the driving field necessary for observing such a transition. We realize such a disorder induced topological Floquet spectrum in the driven honeycomb lattice and quantum well models.

Finally, we show that two-dimensional periodically driven quantum systems with spatial disorder admit a unique topological phase, which we call the anomalous Floquet-Anderson insulator (AFAI). The AFAI is characterized by a quasienergy spectrum featuring chiral edge modes coexisting with a fully localized bulk. Such a spectrum is impossible for a time-independent, local Hamiltonian. These unique characteristics of the AFAI give rise to a new topologically protected nonequilibrium transport phenomenon: quantized, yet nonadiabatic, charge pumping. We identify the topological invariants that distinguish the AFAI from a trivial, fully localized phase, and show that the two phases are separated by a phase transition.

The thesis also present the study of disordered systems using Wegner's Flow equations. The Flow Equation Method was proposed as a technique for studying excited states in an interacting system in one dimension. We apply this method to a one-dimensional tight binding problem with power-law decaying hoppings. This model presents a transition as a function of the exponent of the decay. It is shown that the the entire phase diagram, i.e. the delocalized, critical and localized phases in these systems can be studied using this technique. Based on this technique, we develop a strong-bond renormalization group that procedure where we solve the Flow Equations iteratively. This renormalization group approach provides a new framework to study the transition in this system.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The role of the electronic kinetic energy and its Cartesian components is examined during the formation of the first excited 1�£ and the lowest 3�£ states of HeH+ employing wavefunctions of multi-configuration type with basis orbitals in elliptic coordinates. Results show that the bond formation in these states is preceded primarily by a charge transfer from H to He+ rather than by polarisation of the H-orbital by He+

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Part I

Studies of vibrational relaxation in excited electronic states of simple diatomic molecules trapped in solid rare-gas matrices at low temperatures are reported. The relaxation is investigated by monitoring the emission intensity from vibrational levels of the excited electronic state to vibrational levels of the ground electronic state. The emission was in all cases excited by bombardment of the doped rare-gas solid with X-rays.

The diatomics studied and the band systems seen are: N2, Vegard-Kaplan and Second Positive systems; O2, Herzberg system; OH and OD, A 2Σ+ - X2IIi system. The latter has been investigated only in solid Ne, where both emission and absorption spectra were recorded; observed fine structure has been partly interpreted in terms of slightly perturbed rotational motion in the solid. For N2, OH, and OD emission occurred from v' > 0, establishing a vibrational relaxation time in the excited electronic state of the order, of longer than, the electronic radiative lifetime. The relative emission intensity and decay times for different v' progressions in the Vegard-Kaplan system are found to depend on the rare-gas host and the N2 concentration, but are independent of temperature in the range 1.7°K to 30°K.

Part II

Static crystal field effects on the absorption, fluorescence, and phosphorescence spectra of isotopically mixed benzene crystals were investigated. Evidence is presented which demonstrate that in the crystal the ground, lowest excited singlet, and lowest triplet states of the guest deviate from hexagonal symmetry. The deviation appears largest in the lowest triplet state and may be due to an intrinsic instability of the 3B1u state. High resolution absorption and phospho- rescence spectra are reported and analyzed in terms of site-splitting of degenerate vibrations and orientational effects. The guest phosphorescence lifetime for various benzene isotopes in C6D6 and sym-C6H3D3 hosts is presented and discussed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We have investigated inner-shell excitation of the LiH + molecular ion by electron impact within several different collision models to delineate Rydberg autoionizing resonance structure associated with the LiH + (1σ2σ 2 2 Σ + ) core-excited threshold. The minimal representation requires only the retention of the 1σ and 2σ molecular orbitals, in which the core-excited state involves the promotion of a single electron into the 2σ orbital. This model is extended to include two further representations, in which both the 3σ and 4σ orbitals obtained from a self-consistent field calculation improve target representation, correlation and support additional autoionization channels. This affects the autoionization widths and to a lesser degree the positions of the LiH (1σ2σ 2 n s, n p 1,3 Σ + ) resonance series. Comparing our work with calculations on the counterpart atomic Be system assists in the assignment of the core-excited molecular resonance states. The results from our investigation provide helpful insights into the study of inner-shell transitions produced by electron or photon impact in more complex diatomic molecules.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The total cross sections for photodetachment of the metastable 1s 22p3 4S° and 1s2s2p3 6excited bound states of the negative ion of beryllium are presented for a range of initial photon energies across and beyond the 1s detachment threshold. A multichannel close-coupling R-matrix approximation is used to compute the cross sections, with sophisticated configuration-interaction wavefunctions being used to represent the initial and final states. At present there are no other theoretical or experimental data available with which to compare the cross sections for these two photodetachment processes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Perturbation theory in the lowest non-vanishing order in interelectron interaction has been applied to the theoretical investigation of double-ionization decays of resonantly excited single-electron states. The formulae for the transition probabilities were derived in the LS coupling scheme, and the orbital angular momentum and spin selection rules were obtained. In addition to the formulae, which are exact in this order, three approximate expressions, which correspond to illustrative model mechanisms of the transition, were derived as limiting cases of the exact ones. Numerical results were obtained for the decay of the resonantly excited Kr 1 3d^{-1}5p[^1P] state which demonstrated quite clearly the important role of the interelectron interaction in double-ionization processes. On the other hand, the results obtained show that low-energy electrons can appear in the photoelectron spectrum below the ionization threshold of the 3d shell. As a function of the photon frequency, the yield of these low-energy electrons is strongly amplified by the resonant transition of the 3d electron to 5p (or to other discrete levels), acting as an intermediate state, when the photon frequency approaches that of the transition.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In continuation of our previous work on doubly-excited ions with three and four electrons we present the first results on optical transitions in the term system of doubly-excited ions with five electrons. Transitions between such sextet states were identified in beam-foil spectra of the ions nitrogen, oxygen and fluorine. Assignments were first established by comparison with Multi-Configuration Dirac-Fock calculations. Later assignments were aided by Multi-Configuration Hartree-Fock calculations (see the contribution by G. Miecznik et al. in this issue). Decay curves were recorded for all six candidate lines. The lifetime results are compared to theoretical values which confirm most of the assignments qualitatively.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Following an earlier observation in F VI we identified the line pair 1s2s2p^2 {^5P}-1s2s2p3d {^5P^0} , {^5D^0} for the elements N, O, Mg, and tentatively for A1 and Si in beam-foil spectra. Assignment was established by comparison with Multi-Configuration Dirac-Fock calculations along the isoelectronic sequence. Using this method we also identified some quartet lines of lithium-like ions with Z > 10.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Some of the characteristics of high overtone spectra observed in the near infrared are discussed, particularly in relation to local mode effects, the increasing density of states, and the effect of inter-state resonances and intramolecular vibrational redistribution.