997 resultados para Estimated parameters
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia de Electrónica e Telecomunicações
Resumo:
Mestrado em Engenharia Geotécnica e Geoambiente
Resumo:
Myocardial Perfusion Gated Single Photon Emission Tomography (Gated-SPET) imaging is used for the combined evaluation of myocardial perfusion and left ventricular (LV). The purpose of this study is to evaluate the influence of the total number of counts acquired from myocardium, in the calculation of myocardial functional parameters using routine software procedures. Methods: Gated-SPET studies were simulated using Monte Carlo GATE package and NURBS phantom. Simulated data were reconstructed and processed using the commercial software package Quantitative Gated-SPECT. The Bland-Altman and Mann-Whitney-Wilcoxon tests were used to analyze the influence of the number of total counts in the calculation of LV myocardium functional parameters. Results: In studies simulated with 3MBq in the myocardium there were significant differences in the functional parameters: Left ventricular ejection fraction (LVEF), end-systolic volume (ESV), Motility and Thickness; between studies acquired with 15s/projection and 30s/projection. Simulations with 4.2MBq show significant differences in LVEF, end-diastolic volume (EDV) and Thickness. Meanwhile in the simulations with 5.4MBq and 8.4MBq the differences were statistically significant for Motility and Thickness. Conclusion: The total number of counts per simulation doesn't significantly interfere with the determination of Gated-SPET functional parameters using the administered average activity of 450MBq to 5.4MBq in myocardium.
Resumo:
In life cycle impact assessment (LCIA) models, the sorption of the ionic fraction of dissociating organic chemicals is not adequately modeled because conventional non-polar partitioning models are applied. Therefore, high uncertainties are expected when modeling the mobility, as well as the bioavailability for uptake by exposed biota and degradation, of dissociating organic chemicals. Alternative regressions that account for the ionized fraction of a molecule to estimate fate parameters were applied to the USEtox model. The most sensitive model parameters in the estimation of ecotoxicological characterization factors (CFs) of micropollutants were evaluated by Monte Carlo analysis in both the default USEtox model and the alternative approach. Negligible differences of CFs values and 95% confidence limits between the two approaches were estimated for direct emissions to the freshwater compartment; however the default USEtox model overestimates CFs and the 95% confidence limits of basic compounds up to three orders and four orders of magnitude, respectively, relatively to the alternative approach for emissions to the agricultural soil compartment. For three emission scenarios, LCIA results show that the default USEtox model overestimates freshwater ecotoxicity impacts for the emission scenarios to agricultural soil by one order of magnitude, and larger confidence limits were estimated, relatively to the alternative approach.
Resumo:
The main purpose of this work is to present and to interpret the change of structure and physical properties of tantalum oxynitride (TaNxOy) thin films, produced by dc reactive magnetron sputtering, by varying the processing parameters. A set of TaNxOy films was prepared by varying the reactive gases flow rate, using a N2/O2 gas mixture with a concentration ratio of 17:3. The different films, obtained by this process, exhibited significant differences. The obtained composition and the interpretation of X-ray diffraction results, shows that, depending on the partial pressure of the reactive gases, the films are: essentially dark grey metallic, when the atomic ratio (N + O)/Ta < 0.1, evidencing a tetragonal β-Ta structure; grey-brownish, when 0.1 < (N + O)/Ta < 1, exhibiting a face-centred cubic (fcc) TaN-like structure; and transparent oxide-type, when (N + O)/Ta > 1, evidencing the existence of Ta2O5, but with an amorphous structure. These transparent films exhibit refractive indexes, in the visible region, always higher than 2.0. The wear resistance of the films is relatively good. The best behaviour was obtained for the films with (N + O)/Ta ≈ 0.5 and (N + O)/Ta ≈ 1.3.
Resumo:
The MCNPX code was used to calculate the TG-43U1 recommended parameters in water and prostate tissue in order to quantify the dosimetric impact in 30 patients treated with (125)I prostate implants when replacing the TG-43U1 formalism parameters calculated in water by a prostate-like medium in the planning system (PS) and to evaluate the uncertainties associated with Monte Carlo (MC) calculations. The prostate density was obtained from the CT of 100 patients with prostate cancer. The deviations between our results for water and the TG-43U1 consensus dataset values were -2.6% for prostate V100, -13.0% for V150, and -5.8% for D90; -2.0% for rectum V100, and -5.1% for D0.1; -5.0% for urethra D10, and -5.1% for D30. The same differences between our water and prostate results were all under 0.3%. Uncertainties estimations were up to 2.9% for the gL(r) function, 13.4% for the F(r,θ) function and 7.0% for Λ, mainly due to seed geometry uncertainties. Uncertainties in extracting the TG-43U1 parameters in the MC simulations as well as in the literature comparison are of the same order of magnitude as the differences between dose distributions computed for water and prostate-like medium. The selection of the parameters for the PS should be done carefully, as it may considerably affect the dose distributions. The seeds internal geometry uncertainties are a major limiting factor in the MC parameters deduction.
Resumo:
This paper focuses on a novel formalization for assessing the five parameter modeling of a photovoltaic cell. An optimization procedure is used as a feasibility problem to find the parameters tuned at the open circuit, maximum power, and short circuit points in order to assess the data needed for plotting the I-V curve. A comparison with experimental results is presented for two monocrystalline PV modules.
Resumo:
Discrete time control systems require sample- and-hold circuits to perform the conversion from digital to analog. Fractional-Order Holds (FROHs) are an interpolation between the classical zero and first order holds and can be tuned to produce better system performance. However, the model of the FROH is somewhat hermetic and the design of the system becomes unnecessarily complicated. This paper addresses the modelling of the FROHs using the concepts of Fractional Calculus (FC). For this purpose, two simple fractional-order approximations are proposed whose parameters are estimated by a genetic algorithm. The results are simple to interpret, demonstrating that FC is a useful tool for the analysis of these devices.
Resumo:
Variations of manufacturing process parameters and environmental aspects may affect the quality and performance of composite materials, which consequently affects their structural behaviour. Reliability-based design optimisation (RBDO) and robust design optimisation (RDO) searches for safe structural systems with minimal variability of response when subjected to uncertainties in material design parameters. An approach that simultaneously considers reliability and robustness is proposed in this paper. Depending on a given reliability index imposed on composite structures, a trade-off is established between the performance targets and robustness. Robustness is expressed in terms of the coefficient of variation of the constrained structural response weighted by its nominal value. The Pareto normed front is built and the nearest point to the origin is estimated as the best solution of the bi-objective optimisation problem.
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Civil, na Área de Especialização de Hidráulica
Resumo:
OBJECTIVE To evaluate the level of HIV/AIDS knowledge among men who have sex with men in Brazil using the latent trait model estimated by Item Response Theory. METHODS Multicenter, cross-sectional study, carried out in ten Brazilian cities between 2008 and 2009. Adult men who have sex with men were recruited (n = 3,746) through Respondent Driven Sampling. HIV/AIDS knowledge was ascertained through ten statements by face-to-face interview and latent scores were obtained through two-parameter logistic modeling (difficulty and discrimination) using Item Response Theory. Differential item functioning was used to examine each item characteristic curve by age and schooling. RESULTS Overall, the HIV/AIDS knowledge scores using Item Response Theory did not exceed 6.0 (scale 0-10), with mean and median values of 5.0 (SD = 0.9) and 5.3, respectively, with 40.7% of the sample with knowledge levels below the average. Some beliefs still exist in this population regarding the transmission of the virus by insect bites, by using public restrooms, and by sharing utensils during meals. With regard to the difficulty and discrimination parameters, eight items were located below the mean of the scale and were considered very easy, and four items presented very low discrimination parameter (< 0.34). The absence of difficult items contributed to the inaccuracy of the measurement of knowledge among those with median level and above. CONCLUSIONS Item Response Theory analysis, which focuses on the individual properties of each item, allows measures to be obtained that do not vary or depend on the questionnaire, which provides better ascertainment and accuracy of knowledge scores. Valid and reliable scales are essential for monitoring HIV/AIDS knowledge among the men who have sex with men population over time and in different geographic regions, and this psychometric model brings this advantage.
Resumo:
The discovery of X-rays was undoubtedly one of the greatest stimulus for improving the efficiency in the provision of healthcare services. The ability to view, non-invasively, inside the human body has greatly facilitated the work of professionals in diagnosis of diseases. The exclusive focus on image quality (IQ), without understanding how they are obtained, affect negatively the efficiency in diagnostic radiology. The equilibrium between the benefits and the risks are often forgotten. It is necessary to adopt optimization strategies to maximize the benefits (image quality) and minimize risk (dose to the patient) in radiological facilities. In radiology, the implementation of optimization strategies involves an understanding of images acquisition process. When a radiographer adopts a certain value of a parameter (tube potential [kVp], tube current-exposure time product [mAs] or additional filtration), it is essential to know its meaning and impact of their variation in dose and image quality. Without this, any optimization strategy will be a failure. Worldwide, data show that use of x-rays has been increasingly frequent. In Cabo Verde, we note an effort by healthcare institutions (e.g. Ministry of Health) in equipping radiological facilities and the recent installation of a telemedicine system requires purchase of new radiological equipment. In addition, the transition from screen-films to digital systems is characterized by a raise in patient exposure. Given that this transition is slower in less developed countries, as is the case of Cabo Verde, the need to adopt optimization strategies becomes increasingly necessary. This study was conducted as an attempt to answer that need. Although this work is about objective evaluation of image quality, and in medical practice the evaluation is usually subjective (visual evaluation of images by radiographer / radiologist), studies reported a correlation between these two types of evaluation (objective and subjective) [5-7] which accredits for conducting such studies. The purpose of this study is to evaluate the effect of exposure parameters (kVp and mAs) when using additional Cooper (Cu) filtration in dose and image quality in a Computed Radiography system.
Resumo:
Myocardial perfusion gated-single photon emission computed tomography (gated-SPECT) imaging is used for the combined evaluation of myocardial perfusion and left ventricular (LV) function. The aim of this study is to analyze the influence of counts/pixel and concomitantly the total counts in the myocardium for the calculation of myocardial functional parameters. Material and methods: Gated-SPECT studies were performed using a Monte Carlo GATE simulation package and the NCAT phantom. The simulations of these studies use the radiopharmaceutical 99mTc-labeled tracers (250, 350, 450 and 680MBq) for standard patient types, effectively corresponding to the following activities of myocardium: 3, 4.2, 5.4-8.2MBq. All studies were simulated using 15 and 30s/projection. The simulated data were reconstructed and processed by quantitative-gated-SPECT software, and the analysis of functional parameters in gated-SPECT images was done by using Bland-Altman test and Mann-Whitney-Wilcoxon test. Results: In studies simulated using different times (15 and 30s/projection), it was noted that for the activities for full body: 250 and 350MBq, there were statistically significant differences in parameters Motility and Thickness. For the left ventricular ejection fraction (LVEF), end-systolic volume (ESV) it was only for 250MBq, and 350MBq in the end-diastolic volume (EDV), while the simulated studies with 450 and 680MBq showed no statistically significant differences for global functional parameters: LVEF, EDV and ESV. Conclusion: The number of counts/pixel and, concomitantly, the total counts per simulation do not significantly interfere with the determination of gated-SPECT functional parameters, when using the administered average activity of 450MBq, corresponding to the 5.4MBq of the myocardium, for standard patient types.
Resumo:
Wind resource evaluation in two sites located in Portugal was performed using the mesoscale modelling system Weather Research and Forecasting (WRF) and the wind resource analysis tool commonly used within the wind power industry, the Wind Atlas Analysis and Application Program (WAsP) microscale model. Wind measurement campaigns were conducted in the selected sites, allowing for a comparison between in situ measurements and simulated wind, in terms of flow characteristics and energy yields estimates. Three different methodologies were tested, aiming to provide an overview of the benefits and limitations of these methodologies for wind resource estimation. In the first methodology the mesoscale model acts like “virtual” wind measuring stations, where wind data was computed by WRF for both sites and inserted directly as input in WAsP. In the second approach, the same procedure was followed but here the terrain influences induced by the mesoscale model low resolution terrain data were removed from the simulated wind data. In the third methodology, the simulated wind data is extracted at the top of the planetary boundary layer height for both sites, aiming to assess if the use of geostrophic winds (which, by definition, are not influenced by the local terrain) can bring any improvement in the models performance. The obtained results for the abovementioned methodologies were compared with those resulting from in situ measurements, in terms of mean wind speed, Weibull probability density function parameters and production estimates, considering the installation of one wind turbine in each site. Results showed that the second tested approach is the one that produces values closest to the measured ones, and fairly acceptable deviations were found using this coupling technique in terms of estimated annual production. However, mesoscale output should not be used directly in wind farm sitting projects, mainly due to the mesoscale model terrain data poor resolution. Instead, the use of mesoscale output in microscale models should be seen as a valid alternative to in situ data mainly for preliminary wind resource assessments, although the application of mesoscale and microscale coupling in areas with complex topography should be done with extreme caution.
Resumo:
This paper proposes the calculation of fractional algorithms based on time-delay systems. The study starts by analyzing the memory properties of fractional operators and their relation with time delay. Based on the Fourier analysis an approximation of fractional derivatives through timedelayed samples is developed. Furthermore, the parameters of the proposed approximation are estimated by means of genetic algorithms. The results demonstrate the feasibility of the new perspective.