930 resultados para Epidemics spatial analysis
Resumo:
Recent theoretical models of economic growth have emphasised the role of external effects on the accumulation of factors of production. Although most of the literature has considered the externalities across firms within a region, in this paper we go a step further and consider the possibility that these externalities cross the barriers of regional economies. We assess the role of these external effects in explaining growth and economic convergence. We present a simple growth model, which includes externalities across economies, developing a methodology for testing their existence and estimating their strength. In our view, spatial econometrics is naturally suited to an empirical consideration of these externalities. We obtain evidence on the presence of significant externalities both across Spanish and European regions.
Resumo:
Recent theoretical models of economic growth have emphasised the role of external effects on the accumulation of factors of production. Although most of the literature has considered the externalities across firms within a region, in this paper we go a step further and consider the possibility that these externalities cross the barriers of regional economies. We assess the role of these external effects in explaining growth and economic convergence. We present a simple growth model, which includes externalities across economies, developing a methodology for testing their existence and estimating their strength. In our view, spatial econometrics is naturally suited to an empirical consideration of these externalities. We obtain evidence on the presence of significant externalities both across Spanish and European regions.
Resumo:
Many of the most interesting questions ecologists ask lead to analyses of spatial data. Yet, perhaps confused by the large number of statistical models and fitting methods available, many ecologists seem to believe this is best left to specialists. Here, we describe the issues that need consideration when analysing spatial data and illustrate these using simulation studies. Our comparative analysis involves using methods including generalized least squares, spatial filters, wavelet revised models, conditional autoregressive models and generalized additive mixed models to estimate regression coefficients from synthetic but realistic data sets, including some which violate standard regression assumptions. We assess the performance of each method using two measures and using statistical error rates for model selection. Methods that performed well included generalized least squares family of models and a Bayesian implementation of the conditional auto-regressive model. Ordinary least squares also performed adequately in the absence of model selection, but had poorly controlled Type I error rates and so did not show the improvements in performance under model selection when using the above methods. Removing large-scale spatial trends in the response led to poor performance. These are empirical results; hence extrapolation of these findings to other situations should be performed cautiously. Nevertheless, our simulation-based approach provides much stronger evidence for comparative analysis than assessments based on single or small numbers of data sets, and should be considered a necessary foundation for statements of this type in future.
Resumo:
Radioactive soil-contamination mapping and risk assessment is a vital issue for decision makers. Traditional approaches for mapping the spatial concentration of radionuclides employ various regression-based models, which usually provide a single-value prediction realization accompanied (in some cases) by estimation error. Such approaches do not provide the capability for rigorous uncertainty quantification or probabilistic mapping. Machine learning is a recent and fast-developing approach based on learning patterns and information from data. Artificial neural networks for prediction mapping have been especially powerful in combination with spatial statistics. A data-driven approach provides the opportunity to integrate additional relevant information about spatial phenomena into a prediction model for more accurate spatial estimates and associated uncertainty. Machine-learning algorithms can also be used for a wider spectrum of problems than before: classification, probability density estimation, and so forth. Stochastic simulations are used to model spatial variability and uncertainty. Unlike regression models, they provide multiple realizations of a particular spatial pattern that allow uncertainty and risk quantification. This paper reviews the most recent methods of spatial data analysis, prediction, and risk mapping, based on machine learning and stochastic simulations in comparison with more traditional regression models. The radioactive fallout from the Chernobyl Nuclear Power Plant accident is used to illustrate the application of the models for prediction and classification problems. This fallout is a unique case study that provides the challenging task of analyzing huge amounts of data ('hard' direct measurements, as well as supplementary information and expert estimates) and solving particular decision-oriented problems.
Resumo:
The objective of this work was to assess the potential impact of climate change on the spatial distribution of coffee nematodes (races of Meloidogyne incognita) and leaf miner (Leucoptera coffeella), using a Geographic Information System. Assessment of the impacts of climate change on pest infestations and disease epidemics in crops is needed as a basis for revising management practices to minimize crop losses as climatic conditions shift. Future scenarios focused on the decades of the 2020's, 2050's, and 2080's (scenarios A2 and B2) were obtained from five General Circulation Models available on Data Distribution Centre from Intergovernmental Panel on Climate Change. Geographic distribution maps were prepared using models to predict the number of generations of the nematodes and leaf miner. Maps obtained in scenario A2 allowed prediction of an increased infestation of the nematode and of the pest, due to greater number of generations per month, than occurred under the climatological normal from 1961-1990. The number of generations also increased in the B2 scenario, but was lower than in the A2 scenario for both organisms.
Resumo:
En esta investigación se ha estudiado la relación entre dos subsistemas de la memoria de trabajo (buclefonológico y agenda viso-espacial) y el rendimiento en cálculo con una muestra de 94 niños españolesde 7-8 años. Hemos administrado dos pruebas de cálculo diseñadas para este estudio y seis medidassimples de memoria de trabajo (de contenido verbal, numérico y espacial) de la «Batería de Testsde Memoria de Treball» de Pickering, Baqués y Gathercole (1999), y dos pruebas visuales complementarias.Los resultados muestran una correlación importante entre las medidas de contenido verbaly numérico y el rendimiento en cálculo. En cambio, no hemos encontrado ninguna relación con las medidasespaciales. Se concluye, por lo tanto, que en escolares españoles existe una relación importanteentre el bucle fonológico y el rendimiento en tareas de cálculo. En cambio, el rol de la agenda viso-espaciales nulo
Resumo:
The spatial dynamics of Citrus Variegated Chlorosis (CVC) was studied in a five-year old commercial orchard of 'Valencia' sweet orange (Citrus sp.) trees, located in the northern region of the state of São Paulo, Brazil. One thousand trees were assessed in 25 rows of 40 trees, planted at 8 x 5 m spacing. Disease incidence data were taken beginning in March 1994 and ending in January 1996, at intervals of four to five months. Disease aggregation was observed through the dispersion index analysis (Ib), which was calculated by dividing the area into quadrants. CVC spatial dynamics was examined using semivariogram analysis, which revealed that the disease was aggregated in the field forming foci of 10 to 14 m. For each well-fitted model, a kriging map was created to better visualize the distribution of the disease. The spherical model was the best fit for the data in this study. Kriging maps also revealed that the incidence of CVC increased in periods during which the trees underwent vegetative growth, coinciding with greater expected occurrence of insect vectors of the bacterium in the field.
Resumo:
Wind power is a low-carbon energy production form that reduces the dependence of society on fossil fuels. Finland has adopted wind energy production into its climate change mitigation policy, and that has lead to changes in legislation, guidelines, regional wind power areas allocation and establishing a feed-in tariff. Wind power production has indeed boosted in Finland after two decades of relatively slow growth, for instance from 2010 to 2011 wind energy production increased with 64 %, but there is still a long way to the national goal of 6 TWh by 2020. This thesis introduces a GIS-based decision-support methodology for the preliminary identification of suitable areas for wind energy production including estimation of their level of risk. The goal of this study was to define the least risky places for wind energy development within Kemiönsaari municipality in Southwest Finland. Spatial multicriteria decision analysis (SMCDA) has been used for searching suitable wind power areas along with many other location-allocation problems. SMCDA scrutinizes complex ill-structured decision problems in GIS environment using constraints and evaluation criteria, which are aggregated using weighted linear combination (WLC). Weights for the evaluation criteria were acquired using analytic hierarchy process (AHP) with nine expert interviews. Subsequently, feasible alternatives were ranked in order to provide a recommendation and finally, a sensitivity analysis was conducted for the determination of recommendation robustness. The first study aim was to scrutinize the suitability and necessity of existing data for this SMCDA study. Most of the available data sets were of sufficient resolution and quality. Input data necessity was evaluated qualitatively for each data set based on e.g. constraint coverage and attribute weights. Attribute quality was estimated mainly qualitatively by attribute comprehensiveness, operationality, measurability, completeness, decomposability, minimality and redundancy. The most significant quality issue was redundancy as interdependencies are not tolerated by WLC and AHP does not include measures to detect them. The third aim was to define the least risky areas for wind power development within the study area. The two highest ranking areas were Nordanå-Lövböle and Påvalsby followed by Helgeboda, Degerdal, Pungböle, Björkboda, and Östanå-Labböle. The fourth aim was to assess the recommendation reliability, and the top-ranking two areas proved robust whereas the other ones were more sensitive.
Resumo:
Spatial and temporal analyses of the spectra of the laser induced plasma from a polytetrafluroethylene (PTFE) target obtained with the 1.06 mu m radiation from a Q-switched Nd:YAG laser have been carried out. The spatially resolved spectra of the plasma emission show that molecular bands of C2 (Swan bands) and CN are very intense in the outer regions of the plasma, whereas higher ionized states of carbon are predominant in the core region of the plasma emission. The vibrational temperature and population distribution in the different vibrational levels have been studied as a function of laser energy. From the time resolved studies, it has been observed that there exist fairly large time delays for the onset of emission from all the species in the outer region of the plasma. The molecular bands in each region exhibit much larger time delays in comparison to the ionic lines in the plasma.
Resumo:
Analysis of the emission bands of the CN molecules in the plasma generated from a graphite target irradiated with 1-06/~m radiation pulses from a Q-switched Nd:YAG laser has been done. Depending on the position of the sampled volume of the plasma plume, the intensity distribution in the emission spectra is found to change drastically. The vibrational temperature and population distribution in the different vibrational levels have been studied as function of distance from the target for different time delays with respect to the incidence of the laser pulse. The translational temperature calculated from time of flight is found to be higher than the observed vibrational temperature for CN molecules and the reason for this is explained.
Resumo:
Using the case of an economically declined neighbourhood in the post-industrial German Ruhr Area (sometimes characterized as Germany’s “Rust Belt”), we analyse, describe and conclude how urban agriculture can be used as a catalyst to stimulate and support urban renewal and regeneration, especially from a socio-cultural perspective. Using the methodological framework of participatory action research, and linking bottom-up and top-down planning approaches, a project path was developed to include the population affected and foster individual responsibility for their district, as well as to strengthen inhabitants and stakeholder groups in a permanent collective stewardship for the individual forms of urban agriculture developed and implemented. On a more abstract level, the research carried out can be characterized as a form of action research with an intended transgression of the boundaries between research, planning, design, and implementation. We conclude that by synchronously combining those four domains with intense feedback loops, synergies for the academic knowledge on the potential performance of urban agriculture in terms of sustainable development, as well as the benefits for the case-study area and the interests of individual urban gardeners can be achieved.
Resumo:
En esta investigación se ha estudiado la relación entre dos subsistemas de la memoria de trabajo (bucle fonológico y agenda viso-espacial) y el rendimiento en cálculo con una muestra de 94 niños españoles de 7-8 años. Hemos administrado dos pruebas de cálculo diseñadas para este estudio y seis medidas simples de memoria de trabajo (de contenido verbal, numérico y espacial) de la «Batería de Tests de Memoria de Treball» de Pickering, Baqués y Gathercole (1999), y dos pruebas visuales complementarias. Los resultados muestran una correlación importante entre las medidas de contenido verbal y numérico y el rendimiento en cálculo. En cambio, no hemos encontrado ninguna relación con las medidas espaciales. Se concluye, por lo tanto, que en escolares españoles existe una relación importante entre el bucle fonológico y el rendimiento en tareas de cálculo. En cambio, el rol de la agenda viso-espacial es nulo
Resumo:
The variogram is essential for local estimation and mapping of any variable by kriging. The variogram itself must usually be estimated from sample data. The sampling density is a compromise between precision and cost, but it must be sufficiently dense to encompass the principal spatial sources of variance. A nested, multi-stage, sampling with separating distances increasing in geometric progression from stage to stage will do that. The data may then be analyzed by a hierarchical analysis of variance to estimate the components of variance for every stage, and hence lag. By accumulating the components starting from the shortest lag one obtains a rough variogram for modest effort. For balanced designs the analysis of variance is optimal; for unbalanced ones, however, these estimators are not necessarily the best, and the analysis by residual maximum likelihood (REML) will usually be preferable. The paper summarizes the underlying theory and illustrates its application with data from three surveys, one in which the design had four stages and was balanced and two implemented with unbalanced designs to economize when there were more stages. A Fortran program is available for the analysis of variance, and code for the REML analysis is listed in the paper. (c) 2005 Elsevier Ltd. All rights reserved.