964 resultados para Effector


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Airborne microbial products have been reported to promote immune responses that suppress asthma, yet how these beneficial effects take place remains controversial and poorly understood. We have found that pulmonary exposure with the bacterium Escherichia coli leads to a suppression of allergic airway inflammation, characterized by reduced airway-hyperresponsiveness, eosinophilia and cytokine production by T cells in the lung. This immune modulation was neither mediated by the induction of a Th1 response nor regulatory T cells; was dependent on TLR-4 but did not involve TLR-desensitization. Dendritic cell migration to the draining lymph nodes and subsequent activation of T cells was unaffected by prior exposure to E.coli indicating that the immunomodulation was limited to the lung environment. In non-treated control mice ovalbumin was primarily presented by airway CD11b+ CD11c+ DCs expressing high levels of MHC class II molecules whilst the DCs in E.coli-treated mice displayed a less activated phenotype and had impaired antigen presentation capacity. Consequently, in situ Th2 cytokine production by ovalbuminspecific effector T cells recruited to the airways was significantly reduced. The suppression of airways hyper responsiveness was mediated through the recruitment of IL-17-producing gd-T cells; however, the suppression of dendritic cells and T cells was mediated through a distinct mechanism that could not be overcome by the local administration of activated dendritic cells, or by the in vivo administration of TNF-alpha. Taken together, these data reveal a novel multi-component immunoregulatory pathway that acts to protect the airways from allergic inflammation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Alpha-dystroglycan (alpha-DG) is a cell surface receptor providing a molecular link between the extracellular matrix (ECM) and the actin-based cytoskeleton. During its biosynthesis, alpha-DG undergoes specific and unusual O-glycosylation crucial for its function as a high-affinity cellular receptor for ECM proteins. METHODOLOGY/PRINCIPAL FINDINGS: We report that expression of functionally glycosylated alpha-DG during thymic development is tightly regulated in developing T cells and largely confined to CD4(-)CD8(-) double negative (DN) thymocytes. Ablation of DG in T cells had no effect on proliferation, migration or effector function but did reduce the size of the thymus due to a significant loss in absolute numbers of thymocytes. While numbers of DN thymocytes appeared normal, a marked reduction in CD4(+)CD8(+) double positive (DP) thymocytes occurred. In the periphery mature naïve T cells deficient in DG showed both normal proliferation in response to allogeneic cells and normal migration, effector and memory T cell function when tested in acute infection of mice with either lymphocytic choriomeningitis virus (LCMV) or influenza virus. CONCLUSIONS/SIGNIFICANCE: Our study demonstrates that DG function is modulated by glycosylation during T cell development in vivo and that DG is essential for normal development and differentiation of T cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In a murine model of allergic asthma, we found that Tyk-2((-/-)) asthmatic mice have induced peribronchial collagen deposition, mucosal type mast cells in the lung, IRF4 and hyperproliferative lung Th2 CD4(+) effector T cells over-expressing IL-3, IL-4, IL-5, IL-10 and IL-13. We also observed increased Th9 cells expressing IL-9 and IL-10 as well as T helper cells expressing IL-6, IL-10 and IL-21 with a defect in IL-17A and IL-17F production. This T helper phenotype was accompanied by increased SOCS3 in the lung of Tyk-2 deficient asthmatic mice. Finally, in vivo treatment with rIL-17A inhibited local CD4(+)CD25(+)Foxp3(+) T regulatory cells as well as Th2 cytokines without affecting IL-9 in the lung. These results suggest a role of Tyk-2 in different subsets of T helper cells mediated by SOCS3 regulation that is relevant for the treatment of asthma, cancer and autoimmune diseases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tumor progression is facilitated by regulatory T cells (Treg) and restricted by effector T cells. In this study, we document parallel regulation of CD8(+) T cells and Foxp3(+) Tregs by programmed death-1 (PD-1, PDCD1). In addition, we identify an additional role of CTL antigen-4 (CTLA-4) inhibitory receptor in further promoting dysfunction of CD8(+) T effector cells in tumor models (CT26 colon carcinoma and ID8-VEGF ovarian carcinoma). Two thirds of CD8(+) tumor-infiltrating lymphocytes (TIL) expressed PD-1, whereas one third to half of CD8(+) TIL coexpressed PD-1 and CTLA-4. Double-positive (PD-1(+)CTLA-4(+)) CD8(+) TIL had characteristics of more severe dysfunction than single-positive (PD-1(+) or CTLA-4(+)) TIL, including an inability to proliferate and secrete effector cytokines. Blockade of both PD-1 and CTLA-4 resulted in reversal of CD8(+) TIL dysfunction and led to tumor rejection in two thirds of mice. Double blockade was associated with increased proliferation of antigen-specific effector CD8(+) and CD4(+) T cells, antigen-specific cytokine release, inhibition of suppressive functions of Tregs, and upregulation of key signaling molecules critical for T-cell function. When used in combination with GVAX vaccination (consisting of granulocyte macrophage colony-stimulating factor-expressing irradiated tumor cells), inhibitory pathway blockade induced rejection of CT26 tumors in 100% of mice and ID8-VEGF tumors in 75% of mice. Our study indicates that PD-1 signaling in tumors is required for both suppressing effector T cells and maintaining tumor Tregs, and that PD-1/PD-L1 pathway (CD274) blockade augments tumor inhibition by increasing effector T-cell activity, thereby attenuating Treg suppression. Cancer Res; 73(12); 3591-603. ©2013 AACR.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Because the transcription factor neuronal Per-Arnt-Sim-type signal-sensor protein-domain protein 2 (NPAS2) acts both as a sensor and an effector of intracellular energy balance, and because sleep is thought to correct an energy imbalance incurred during waking, we examined NPAS2's role in sleep homeostasis using npas2 knockout (npas2-/-) mice. We found that, under conditions of increased sleep need, i.e., at the end of the active period or after sleep deprivation (SD), NPAS2 allows for sleep to occur at times when mice are normally awake. Lack of npas2 affected electroencephalogram activity of thalamocortical origin; during non-rapid eye movement sleep (NREMS), activity in the spindle range (10-15 Hz) was reduced, and within the delta range (1-4 Hz), activity shifted toward faster frequencies. In addition, the increase in the cortical expression of the NPAS2 target gene period2 (per2) after SD was attenuated in npas2-/- mice. This implies that NPAS2 importantly contributes to the previously documented wake-dependent increase in cortical per2 expression. The data also revealed numerous sex differences in sleep; in females, sleep need accumulated at a slower rate, and REMS loss was not recovered after SD. In contrast, the rebound in NREMS time after SD was compromised only in npas2-/- males. We conclude that NPAS2 plays a role in sleep homeostasis, most likely at the level of the thalamus and cortex, where NPAS2 is abundantly expressed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Brain inflammation plays a central role in numerous brain pathologies, including multiple sclerosis (MS). Microglial cells and astrocytes are the effector cells of neuroinflammation. They can be activated also by agents such as interferon-gamma (IFN-gamma) and lipopolysaccharide (LPS). Peroxisome proliferator-associated receptor (PPAR) pathways are involved in the control of the inflammatory processes, and PPAR-beta seems to play an important role in the regulation of central inflammation. In addition, PPAR-beta agonists were shown to have trophic effects on oligodendrocytes in vitro, and to confer partial protection in experimental autoimmune encephalomyelitis (EAE), an animal model of MS. In the present work, a three-dimensional brain cell culture system was used as in vitro model to study antibody-induced demyelination and inflammatory responses. GW 501516, a specific PPAR-beta agonist, was examined for its capacity to protect from antibody-mediated demyelination and to prevent inflammatory responses induced by IFN-gamma and LPS. METHODS: Aggregating brain cells cultures were prepared from embryonal rat brain, and used to study the inflammatory responses triggered by IFN-gamma and LPS and by antibody-mediated demyelination induced by antibodies directed against myelin-oligodendrocyte glycoprotein (MOG). The effects of GW 501516 on cellular responses were characterized by the quantification of the mRNA expression of tumor necrosis factor-alpha (TNF-alpha), interleukin-6 (IL-6), inducible NO synthase (i-NOS), PPAR-beta, PPAR-gamma, glial fibrillary acidic protein (GFAP), myelin basic protein (MBP), and high molecular weight neurofilament protein (NF-H). GFAP expression was also examined by immunocytochemistry, and microglial cells were visualized by isolectin B4 (IB4) and ED1 labeling. RESULTS: GW 501516 decreased the IFN-gamma-induced up-regulation of TNF-alpha and iNOS in accord with the proposed anti-inflammatory effects of this PPAR-beta agonist. However, it increased IL-6 m-RNA expression. In demyelinating cultures, reactivity of both microglial cells and astrocytes was observed, while the expression of the inflammatory cytokines and iNOS remained unaffected. Furthermore, GW 501516 did not protect against the demyelination-induced changes in gene expression. CONCLUSION: Although GW 501516 showed anti-inflammatory activity, it did not protect against antibody-mediated demyelination. This suggests that the protective effects of PPAR-beta agonists observed in vivo can be attributed to their anti-inflammatory properties rather than to a direct protective or trophic effect on oligodendrocytes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The current literature on the role of interleukin (IL)-2 in memory CD8(+) T-cell differentiation indicates a significant contribution of IL-2 during primary and also secondary expansion of CD8(+) T cells. IL-2 seems to be responsible for optimal expansion and generation of effector functions following primary antigenic challenge. As the magnitude of T-cell expansion determines the numbers of memory CD8(+) T cells surviving after pathogen elimination, these events influence memory cell generation. Moreover, during the contraction phase of an immune response where most antigen-specific CD8(+) T cells disappear by apoptosis, IL-2 signals are able to rescue CD8(+) T cells from cell death and provide a durable increase in memory CD8(+) T-cell counts. At the memory stage, CD8(+) T-cell frequencies can be boosted by administration of exogenous IL-2. Significantly, only CD8(+) T cells that have received IL-2 signals during initial priming are able to mediate efficient secondary expansion following renewed antigenic challenge. Thus, IL-2 signals during different phases of an immune response are key in optimizing CD8(+) T-cell functions, thereby affecting both primary and secondary responses of these T cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

CD8(+) CTLs play a critical role in antitumor immunity. However, vaccination with synthetic peptide containing CTL epitopes has not been generally effective in inducing protective antitumor immunity. In this study, we addressed the detailed mechanism(s) involved in this failure using a new tumor model of BALB/c transplanted tumors expressing NY-ESO-1, an extensively studied human cancer/testis Ag. Whereas peptide immunization with an H2-D(d)-restricted CTL epitope derived from NY-ESO-1 (NY-ESO-1 p81-88) induced NY-ESO-1(81-88)-specific CD8(+) T cells in draining lymph nodes and spleens, tumor growth was significantly enhanced. Single-cell analysis of specific CD8(+) T cells revealed that peptide immunization caused apoptosis of >80% of NY-ESO-1(81-88)-specific CD8(+) T cells at tumor sites and repetitive immunization further diminished the number of specific CD8(+) T cells. This phenomenon was associated with elevated surface expression of Fas and programmed death-1. When peptide vaccination was combined with an adjuvant, a TLR9 ligand CpG, the elevated Fas and programmed death-1 expression and apoptosis induction were not observed, and vaccine with peptide and CpG was associated with strong tumor growth inhibition. Selection of appropriate adjuvants is essential for development of effective cancer vaccines, with protection of effector T cells from peptide vaccine-induced apoptosis being a prime objective.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction : La prévalence des maladies stéatosiques non alcooliques du foie augmente de manière exponentielle dans les pays industrialisés. Le développement de ces maladies se traduit par une stéatose hépatique fréquemment associée à une résistance à l'insuline. Cette résistance a pu être expliquée par l'accumulation intra-hépatocytaire de lipides intermédiaires tels que Céramides et Diacylglycérols. Cependant, notre modèle animal de stéatose hépatique, les souris invalidées pour la protéine hépatique « Microsomal Triglyceride Transfert Protein » (Mttp Δ / Δ), ne développent pas de résistance à l'insuline, malgré une augmentation de ces lipides intermédiaires. Ceci suggère la présence d'un autre mécanisme induisant la résistance à l'insuline. Matériels et méthodes : L'analyse Microarray du foie des souris Mttp Δ / Δ a montré une forte up-régulation des gènes « Cell-death Inducing DFFA-like Effector C (cidec) », « Lipid Storage Droplet Protein 5 (lsdp5) » et « Bernardinelli-Seip Congenital Lipodystrophy 2 Homolog (seipin) » dans le foie des souris Mttp Δ / Δ. Ces gènes ont été récemment identifiés comme codant pour des protéines structurelles des gouttelettes lipidiques. Nous avons testé si ces gènes jouaient un rôle important dans le développement de la stéatose hépatique, ainsi que de la résistance à l'insuline. Résultats : Nous avons démontré que ces gènes sont fortement augmentés dans d'autres modèles de souris stéatosées tels que ceux présentant une sur-expression de ChREBP. Dans les hépatocytes murins (AML12 :Alfa Mouse Liver 12), l'invalidation de cidec et/ou seipin semble diminuer la phosphorylation d'AKT après stimulation à l'insuline, suggérant une résistance à l'insuline. Chez l'homme, l'expression de ces gènes est augmentée dans le foie de patients obèses avec stéatose hépatique. De manière intéressante, cette augmentation est atténuée chez les patients avec résistance à l'insuline. Conclusion : Ces données suggèrent que ces protéines des gouttelettes lipidiques augmentent au cours du développement de la stéatose hépatique et que cette augmentation protège contre la résistance à l'insuline.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During chronic infection, pathogen-specific CD8(+) T cells upregulate expression of molecules such as the inhibitory surface receptor PD-1, have diminished cytokine production and are thought to undergo terminal differentiation into exhausted cells. Here we found that T cells with memory-like properties were generated during chronic infection. After transfer into naive mice, these cells robustly proliferated and controlled a viral infection. The reexpanded T cell populations continued to have the exhausted phenotype they acquired during the chronic infection. Thus, the cells underwent a form of differentiation that was stably transmitted to daughter cells. We therefore propose that during persistent infection, effector T cells stably differentiate into a state that is optimized to limit viral replication without causing overwhelming immunological pathology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Metabolites from intestinal microbiota are key determinants of host-microbe mutualism and, consequently, the health or disease of the intestinal tract. However, whether such host-microbe crosstalk influences inflammation in peripheral tissues, such as the lung, is poorly understood. We found that dietary fermentable fiber content changed the composition of the gut and lung microbiota, in particular by altering the ratio of Firmicutes to Bacteroidetes. The gut microbiota metabolized the fiber, consequently increasing the concentration of circulating short-chain fatty acids (SCFAs). Mice fed a high-fiber diet had increased circulating levels of SCFAs and were protected against allergic inflammation in the lung, whereas a low-fiber diet decreased levels of SCFAs and increased allergic airway disease. Treatment of mice with the SCFA propionate led to alterations in bone marrow hematopoiesis that were characterized by enhanced generation of macrophage and dendritic cell (DC) precursors and subsequent seeding of the lungs by DCs with high phagocytic capacity but an impaired ability to promote T helper type 2 (TH2) cell effector function. The effects of propionate on allergic inflammation were dependent on G protein-coupled receptor 41 (GPR41, also called free fatty acid receptor 3 or FFAR3), but not GPR43 (also called free fatty acid receptor 2 or FFAR2). Our results show that dietary fermentable fiber and SCFAs can shape the immunological environment in the lung and influence the severity of allergic inflammation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Many new types of vaccines against infectious or malignant diseases are currently being proposed. Careful characterization of the induced immune response is required in assessing their efficiency. While in most studies human tumor antigen-specific T cells are analyzed after in vitro re-stimulation, we investigated these T cells directly ex vivo using fluorescent tetramers. In peripheral blood lymphocytes from untreated melanoma patients with advanced disease, a fraction of tumor antigen (Melan-A/MART-1)-specific T cells were non-naive, thus revealing tumor-driven immune activation. After immunotherapy with synthetic peptides plus adjuvant, we detected tumor antigen-specific T cells that proliferated and differentiated to memory cells in vivo in some melanoma patients. However, these cells did not present the features of effector cells as found in cytomegalovirus specific T cells analyzed in parallel. Thus, peptide plus adjuvant vaccines can lead to activation and expansion of antigen specific CD8(+) T cells in PBL. Differentiation to protective CD8(+) effector cells may, however, require additional vaccine components that stimulate T cells more efficiently, a major challenge for the development of future immunotherapy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Transcription Activator-Like Effector Nucleases (TALEN) are potential tools for precise genome engineering of laboratory animals. We report the first targeted genomic integration in the rat using TALENs (Transcription Activator-Like Effector Nucleases) by homology-derived recombination (HDR). We assembled TALENs and designed a linear donor insert targeting a pA476T mutation in the rat Glucocorticoid Receptor (Nr3c1) namely GR(dim), that prevents receptor homodimerization in the mouse. TALEN mRNA and linear double-stranded donor were microinjected into rat one-cell embryos. Overall, we observed targeted genomic modifications in 17% of the offspring, indicating high TALEN cutting efficiency in rat zygotes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Unicellular organisms, such as the protozoan parasite Leishmania, can be stimulated to show some morphological and biochemical features characteristic of mammalian apoptosis. This study demonstrates that under a variety of stress conditions such as serum deprivation, heat shock and nitric oxide, cell death can be induced leading to genomic DNA fragmentation into oligonucleosomes. DNA fragmentation was observed, without induction, in the infectious stages of the parasite, and correlated with the presence of internucleosomal nuclease activity, visualisation of 45 to 59 kDa nucleases and detection of TUNEL-positive nuclei. DNA fragmentation was not dependent on active effector downstream caspases nor on the lysosomal cathepsin L-like enzymes CPA and CPB. These data are consistent with the presence of a caspase-independent cell death mechanism in Leishmania, induced by stress and differentiation that differs significantly from metazoa.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The vaccinia virus (VACV) C6 protein has sequence similarities with the poxvirus family Pox_A46, involved in regulation of host immune responses, but its role is unknown. Here, we have characterized the C6 protein and its effects in virus replication, innate immune sensing and immunogenicity in vivo. C6 is a 18.2 kDa protein, which is expressed early during virus infection and localizes to the cytoplasm of infected cells. Deletion of the C6L gene from the poxvirus vector MVA-B expressing HIV-1 Env, Gag, Pol and Nef antigens from clade B (MVA-B ΔC6L) had no effect on virus growth kinetics; therefore C6 protein is not essential for virus replication. The innate immune signals elicited by MVA-B ΔC6L in human macrophages and monocyte-derived dendritic cells (moDCs) are characterized by the up-regulation of the expression of IFN-β and IFN-α/β-inducible genes. In a DNA prime/MVA boost immunization protocol in mice, flow cytometry analysis revealed that MVA-B ΔC6L enhanced the magnitude and polyfunctionality of the HIV-1-specific CD4(+) and CD8(+) T-cell memory immune responses, with most of the HIV-1 responses mediated by the CD8(+) T-cell compartment with an effector phenotype. Significantly, while MVA-B induced preferentially Env- and Gag-specific CD8(+) T-cell responses, MVA-B ΔC6L induced more Gag-Pol-Nef-specific CD8(+) T-cell responses. Furthermore, MVA-B ΔC6L enhanced the levels of antibodies against Env in comparison with MVA-B. These findings revealed that C6 can be considered as an immunomodulator and that deleting C6L gene in MVA-B confers an immunological benefit by enhancing IFN-β-dependent responses and increasing the magnitude and quality of the T-cell memory immune responses to HIV-1 antigens. Our observations are relevant for the improvement of MVA vectors as HIV-1 vaccines.