919 resultados para Educational Function of Journalism


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction. Rambutan is a tropical fruit species with recalcitrant seeds. Despite the expansion of exotic fruit cultivation in Brazil, lots of which fruit species, including rambutan, need basic information, especially in relation to propagation and storage of seeds, which are important for genetic improvement studies, maintenance of genetic sources and seedling production. Materials and methods. A completely randomized design was adopted with treatments distributed in a factorial arrangement, 3 x 4, referring to three seed storage conditions [room temperature conditions; a dry chamber with (18 +/- 2) degrees C and 60% relative humidity; and a cold chamber with (10 +/- 2) degrees C and 70% relative humidity] and four storage times ( 0, 7, 14 and 21 d). Each treatment of 10 seeds was replicated five times. Data on seedling emergence, emergence rate, plant height, number of leaves and length of main root were submitted to variance analysis and means were separated using Tukey's test. Correlation analysis between seed moisture and seedling emergence was performed. Results and discussion. Our results indicated that dry chamber conditions promoted the statistically significantly highest seedling emergence after 7 d of storage. Cold chamber conditions promoted an extremely low seedling emergence independently of time. Conclusion. Rambutan seeds can be stored in a dry chamber for 7 d without losing viability; after 14 d of storage the loss of emergence is 60%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The strangeness content of the nucleon is determined from a statistical model using confined quark levels, and is shown to have a good agreement with the corresponding values extracted from experimental data. The quark levels are generated in a Dirac equation that uses a linear confining potential (scalar plus vector). With the requirement that the result for the Gottfried sum rule violation, given by the New Muon Collaboration (NMC), is well reproduced, we also obtain the difference between the structure functions of the proton and neutron, and the corresponding sea quark contributions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, zinc oxide samples were obtained from hydroxycarbonate by thermal decomposition at 300°C. Zinc hydroxycarbonate samples were produced by homogeneous precipitation over different periods of time. The method used to obtain zinc oxide produces different morphologies as a function of the precursor precipitation time. Among the obtained particle shapes were porous spherical aggregates, spherulitic needle aggregates, and single acicular particles. This work investigated spherulitic needle-aggregate formation and the correlation among morphology, domain size, and microstrain. Transmission electron microscopy data revealed that the acicular particles that form the spherulitic needle aggregates consist of nanometer crystallites. Apparent crystallite size and microstrain in the directions perpendicular to (h00), (h0l), (hk0), and (00l) planes were invariable as a function of precursor precipitation time. From the results, it was possible to conclude that the precursor precipitation period directly influenced the morphology of the zinc oxide but did not influence average crystallite size and microstrain for ZnO samples. Therefore, using this route, it was possible to prepare zinc oxide with different morphologies without microstructural alterations. © 2001 International Centre for Diffraction Data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the aim of evaluating the effect of intercropping on the productivity of beet and roquette crops, a study was conducted in the Section of Vegetable and Aromatic-Medicinal Plants, FCAV-UNESP, Jaboticabal/SP. The treatments consisted of co-cultivations of roquette (Cultivada) and beets (Early Wonder) established at 0, 7, 14 and 21 days after the transplanting of beets, and as monocultures of beets and roquette. The experiments were delineated in a randomized block design. The productivity of beets in monoculture was not superior to that obtained with intercropping with roquette. The production of dry mass of roquette with intercropping was less than that with monoculture and the reduction was more marked with more delayed establishment of co-cultivation. Intercropping established at 0 and 7 days after the transplanting of beets was the most efficient, with indices of efficient use of land of 1.26 and 1.27, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The experiment was conducted at UNESP, Jaboticabal-SP, during the period of September to November of 2000, with the objective of evaluating the productivity of the cultivation of lettuce and radishes as a function of spacing between plants and of the time of establishment of intercropping. The experimental design was a completely randomized blocks and four replications. The 14 treatments consisted of combinations of spacing between lines (0.30 and 0.40 m), cultivation systems (intercropping and monoculture), and time of sowing of radish seeds to establish intercropping (0, 7 and 14 days after transplant of lettuce). The cultivars of lettuce and radish were, 'Tainá' and 'Crimson Gigante', respectively. A greater yield of commercial radish roots was obtained with intercropping cultivation. The fresh mass of lettuce in monoculture did not differ from that produced with intercropping. These results suggest that intercropping cultivation between these species is advantageous.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We use the black hole entropy function to study the effect of Born-Infeld terms on the entropy of extremal black holes in heterotic string theory in four dimensions. We find, that after adding a set of higher curvature terms to the effective action, attractor mechanism, works and Born-Infeld terms contribute to the stretching of near horizon geometry. In the α′ → 0 limit, the solutions of attractor equations for moduli, fields and the resulting entropy, are in conformity with the ones for standard two charge black holes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Firefly luciferases are called pH-sensitive because their bioluminescence spectra display a typical red-shift at acidic pH, higher temperatures, and in the presence of heavy metal cations, whereas other beetle luciferases (click beetles and railroadworms) do not, and for this reason they are called pH-insensitive. Despite many studies on firefly luciferases, the origin of pH-sensitivity is far from being understood. This subject is revised in view of recent results. Some substitutions of amino-acid residues influencing pH-sensitivity in firefly luciferases have been identified. Sequence comparison, site-directed mutagenesis and modeling studies have shown a set of residues differing between pH-sensitive and pH-insensitive luciferases which affect bioluminescence colors. Some substitutions dramatically affecting bioluminescence colors in both groups of luciferases are clustered in the loop between residues 223-235 (Photinus pyralis sequence). A network of hydrogen bonds and salt bridges involving the residues N229-S284-E311-R337 was found to be important for affecting bioluminescence colors. It is suggested that these structural elements may affect the benzothiazolyl side of the luciferin-binding site affecting bioluminescence colors. Experimental evidence suggest that the residual red light emission in pH-sensitive luciferases could be a vestige that may have biological importance in some firefly species. Furthermore, the potential utility of pH-sensitivity for intracellular biosensing applications is considered. © The Royal Society of Chemistry and Owner Societies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Soil compaction may be defined as the pressing of soil to make it denser. Soil compaction makes the soil denser, decreases permeability of gas and water exchange as well as alterations in thermal relations, and increases mechanical strength of the soil. Compacted soil can restrict normal root development. Simulations of the root restricting layers in a greenhouse are necessary to develop a mechanism to alleviate soil compaction problems in these soils. The selection of three distinct bulk densities based on the standard proctor test is also an important factor to determine which bulk density restricts the root layer. This experiment aimed to assess peanut (Arachis hypogea) root volume and root dry matter as a function of bulk density and water stress. Three levels of soil density (1.2, 1.4, and 1.6g cm-3), and two levels of the soil water content (70 and 90% of field capacity) were used. Treatments were arranged as completely randomized design, with four replications in a 3×2 factorial scheme. The result showed that peanut yield generally responded favorably to subsurface compaction in the presence of high mechanical impedance. This clearly indicates the ability of this root to penetrate the hardpan with less stress. Root volume was not affected by increase in soil bulk density and this mechanical impedance increased root volume when roots penetrated the barrier with less energy. Root growth below the compacted layer (hardpan), was impaired by the imposed barrier. This stress made it impossible for roots to grow well even in the presence of optimum soil water content. Generally soil water content of 70% field capacity (P<0.0001) enhanced greater root proliferation. Nonetheless, soil water content of 90% field capacity in some occasions proved better for root growth. Some of the discrepancies observed were that mechanical impedance is not a good indicator for measuring root growth restriction in greenhouse. Future research can be done using more levels of water to determine the lowest soil water level, which can inhibit plant growth.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Soil compaction reduces root growth, affecting the yield, especially in the Southern Coastal Plain of the USA. Simulations of the root restricting layers in greenhouses are necessary to develop mechanisms which alleviate soil compaction problems. The selection of three distinct bulk densities based on the Standard Proctor Test is also an important factor to determine which bulk density restricts root penetration. This experiment was conducted to evaluate cotton (Gossypium hirsutum L.) root volume and root dry matter as a function of soil bulk density and water stress. Three levels of soil density (1.2, 1.4, and 1.6 g cm-3), and two levels of water content (70 and 90% of field capacity) were used. A completely randomized design with four replicates in a 3×2 factorial pattern was used. The results showed that mechanical impedance affected root volume positively with soil bulk density of 1.2 and 1.6 g cm-3, enhancing root growth (P>0.0064). Soil water content reduced root growth as root and shoot growth was higher at 70% field capacity than that at 90% field capacity. Shoot growth was not affected by the increase in soil bulk density and this result suggests that soil bulk density is not a good indicator for measuring mechanical impedance in some soils.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main objective of this work is to analyze the ability of FACTS devices like TCSC and UPFC to damp low frequency oscillations and a POD controller is also included. A comparative study of damping effect of those devices IS carried out. The Power Sensitivity Model (PSM) is used to the representation of the electric power system. Sensibility analysis using the residue method shows the best place for the installation of FACTS and the procedure to determine POD parameters. ©2008 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives: The aim of this study was to analyze the stress distribution on dentin/adhesive interface (d/a) through a 3-D finite element analysis (FEA) varying the number and diameter of the dentin tubules orifice according to dentin depth, keeping hybrid layer (HL) thickness and TAǴs length constant. Materials and Methods: 3 models were built through the SolidWorks software: SD - specimen simulating superficial dentin (41 x 41 x 82 μm), with a 3 μm thick HL, a 17 μm length Tag, and 8 tubules with a 0.9 μm diameter restored with composite resin. MD - similar to M1 with 12 tubules with a 1.2 μm diameter, simulating medium dentin. DD - similar to M1 with 16 tubules with a 2.5 μm diameter, simulating deep dentin. Other two models were built in order to keep the diameter constant in 2.5 μm: MS - similar to SD with 8 tubules; and MM - similar to MD with 12 tubules. The boundary condition was applied to the base surface of each specimen. Tensile load (0.03N) was performed on the composite resin top surface. Stress field (maximum principal stress in tension - σMAX) was performed using Ansys Wokbench 10.0. Results: The peak of σMAX (MPa) were similar between SD (110) and MD (106), and higher for DD (134). The stress distribution pathway was similar for all models, starting from peritubular dentin to adhesive layer, intertubular dentin and hybrid layer. The peak of σMAX (MPa) for those structures was, respectively: 134 (DD), 56.9 (SD), 45.5 (DD), and 36.7 (MD). Conclusions: The number of dentin tubules had no influence in the σMAX at the dentin/adhesive interface. Peritubular and intertubular dentin showed higher stress with the bigger dentin tubules orifice condition. The σMAX in the hybrid layer and adhesive layer were going down from superficial dentin to deeper dentin. In a failure scenario, the hybrid layer in contact with peritubular dentin and adhesive layer is the first region for breaking the adhesion. © 2011 Nova Science Publishers, Inc.