829 resultados para Early Age Concrete
Resumo:
In this study we describe the courtship and spawning behaviors of captive yellowfin tuna (Thunnus albacares), their spawning periodicity, the influence of physical and biological factors on spawning and hatching, and egg and early-larval development of this species at the Achotines Laboratory, Republic of Panama, during October 1996 through March 2000. Spawning occurred almost daily over extended periods and at water temperatures from 23.3° to 29.7°C. Water temperature appeared to be the main exogenous factor controlling the occurrence and timing of spawning. Courtship and spawning behaviors were ritualized and consistent among three groups of broodstock over 3.5 years. For any date, the time of day of spawning (range: 1330 to 2130 h) was predictable from mean daily water temperature, and 95% of hatching occurred the next day between 1500 and 1900 h. We estimated that females at first spawning averaged 1.6−2.0 years of age. Over short time periods (<1 month), spawning females increased their egg production from 30% to 234% in response to shortterm increases in daily food ration of 9% to 33%. Egg diameter, notochord length (NL) at hatching, NL at first feeding, and dry weights of these stages were estimated. Water temperature was significantly, inversely related to egg size, egg-stage duration, larval size at hatching, and yolksac larval duration.
Resumo:
Behavior of young (8−18 mm SL) giant trevally (Caranx ignobilis), a large coral-reef−associated predator, was observed in the laboratory and the ocean. Size was a better predictor of swimming speed and endurance than was age. Critical speed increased with size from 12 to 40 cm/s at 2.7 cm/s for each mm increase in size. Mean scaled critical speed was 19 body lengths/s and was not size related. Swimming speed in the ocean was 4 to 20 cm/s (about half of critical speed) and varied among areas, but within each area, it increased at 2 cm/s for each mm increase in size. Swimming endurance in the laboratory increased from 5 to 40 km at 5 km for each mm increase in size. Vertical distribution changed ontogenetically: larvae swam shallower, but more variably, and then deeper with growth. Two-thirds of individuals swam directionally with no ontogenetic increase in orientation precision. Larvae swam offshore off open coasts, but not in a bay. In situ observations of C. ignobilis feeding, interacting with pelagic animals, and reacting to reefs are reported. Manusc
Resumo:
The importance of the process of Neolithization for the genetic make-up of European populations has been hotly debated, with shifting hypotheses from a demic diffusion (DD) to a cultural diffusion (CD) model. In this regard, ancient DNA data from the Balkan Peninsula, which is an important source of information to assess the process of Neolithization in Europe, is however missing. In the present study we show genetic information on ancient populations of the South-East of Europe. We assessed mtDNA from ten sites from the current territory of Romania, spanning a time-period from the Early Neolithic to the Late Bronze Age. mtDNA data from Early Neolithic farmers of the Starcevo Cris culture in Romania (Carcea, Gura Baciului and Negrilesti sites), confirm their genetic relationship with those of the LBK culture (Linienbandkeramik Kultur) in Central Europe, and they show little genetic continuity with modern European populations. On the other hand, populations of the Middle-Late Neolithic (Boian, Zau and Gumelnita cultures), supposedly a second wave of Neolithic migration from Anatolia, had a much stronger effect on the genetic heritage of the European populations. In contrast, we find a smaller contribution of Late Bronze Age migrations to the genetic composition of Europeans. Based on these findings, we propose that permeation of mtDNA lineages from a second wave of Middle-Late Neolithic migration from North-West Anatolia into the Balkan Peninsula and Central Europe represent an important contribution to the genetic shift between Early and Late Neolithic populations in Europe, and consequently to the genetic make-up of modern European populations.
Resumo:
Nurseries play an important part in the production of marine f ishes. Determining the relative importance of different nurseries in maintaining the parental population, however, can be difficult. In the western Gulf of Alaska, the Kodiak Island vicinity may be particularly well suited as a pollock nursery because of a prey-rich nearshore environment. Our objectives were 1) to examine age-0 pollock body condition, growth, and diet for evidence of a nearshore-shelf effect, and 2) to determine if variation in the potential prey field of zooplankton was associated with this effect. This was a pilot study that occurred in three bays and over the adjacent shelf off east Kodiak Island during 5−18 September 1993. Sampling occurred only during night at locations where echo sign indicated the presence of age-0 pollock. Echo sign was targeted to increase the chance of collecting fish given the limited vessel time. Fish condition was indicated by length-specific body weight. Growth rate indices were estimated for three different periods by using fish lengthage data and daily otolith increment widths: 1) from hatching date to capture, 2) 1−5 d before capture, and 3) 6−10 d before capture. Fish diet was determined from gut content analysis. Considerable variation among areas was evident in zooplankton composition, and fish condition, growth, and diet. However, relatively high prey densities, as well as fish condition and growth rates indicated that Chiniak Bay was particularly well suited as a pollock nursery. Hatching-date distributions indicated that most of the age-0 walleye pollock from bays were spawned earlier than were those from the shelf. The benefit of being reared in nearshore areas is therefore realized more by individuals that were spawned early than by individuals spawned relatively late.
Resumo:
Although growth rate and age data are essential for leatherback management, estimates of these demographic parameters remain speculative due to the cryptic life history of this endangered species. Skeletochronological analysis of scleral ossicles obtained from 8 captive, known-age and 33 wild leatherbacks originating from the western North Atlantic was conducted to characterize the ossicles and the growth marks within them. Ages were accurately estimated for the known-age turtles, and their growth mark attributes were used to calibrate growth mark counts for the ossicles from wild specimens. Due to growth mark compaction and resorption, the number of marks visible at ossicle section tips was consistently and significantly greater than the number visible along the lateral edges, demonstrating that growth mark counts should be performed at the tips so that age is not underestimated. A correction factor protocol that incorporated the trajectory of early growth increments was used to estimate the number of missing marks in those ossicles exhibiting resorption, which was then added to the number of observed marks to obtain an age estimate for each turtle. A generalized smoothing spline model, von Bertalanffy growth curve, and size-at-age function were used to obtain estimates of age at maturity for leatherbacks in the western North Atlantic. Results of these analyses suggest that median age at maturation for leatherbacks in this part of the world may range from 24.5 to 29 yr. These age estimates are much greater than those proposed in previous studies and have significant implications for population management and recovery.
Resumo:
As nearshore fish populations decline, many commercial fishermen have shifted fishing effort to deeper continental slope habitats to target fishes for which biological information is limited. One such fishery that developed in the northeastern Pacific Ocean in the early 1980s was for the blackgill rockfish (Sebastes melanostomus), a deep-dwelling (300−800 m) species that congregates over rocky pinnacles, mainly from southern California to southern Oregon. Growth zone-derived age estimates from otolith thin sections were compared to ages obtained from the radioactive disequilibria of 210Pb, in relation to its parent, 226Ra, in otolith cores of blackgill rockfish. Age estimates were validated up to 41 years, and a strong pattern of agreement supported a longevity exceeding 90 years. Age and length data fitted to the von Bertalanffy growth function indicated that blackgill rockfish are slow-growing (k= 0.040 females, 0.068 males) and that females grow slower than males, but reach a greater length. Age at 50% maturity, derived from previously published length-at-maturity estimates, was 17 years for males and 21 years for females. The results of this study agree with general life history traits already recognized for many Sebastes species, such as long life, slow growth, and late age at maturation. These traits may undermine the sustainability of blackgill rockfish populations when heavy fishing pressure, such as that which occurred in the 1980s, is applied.
Resumo:
We examined 536 permit (Trachinotus falcatus, 65–916 mm FL) collected from the waters of Florida Keys and from the Tampa Bay area on Florida’s Gulf coast to describe their growth and reproduction.Among permit that we sexed, females ranged from 266 to 916 mm in length (mean=617) and males ranged from 274 to 855 mm (mean=601). Ages of 297 permit ranging from 102 to 900 mm FL were estimated from thin-sectioned otoliths (sagittae). The large proportion of otoliths with an annulus on the margin and an otolith from an OTC-injected fish suggested that a single annulus was formed each year during late spring or early summer.Permit reach a maximum age of at least 23 years.Permit grew rapidly until an age of about five years, and then growth slowed considerably. Male and female von Bertalanffy growth models were not significantly different, and the sexes-combined growth model was FL=753.1(1–e –0.348(Age+0.585)). Gonad development was seasonal, and spawning occurred during late spring and summer over artificial and natural reefs at depths of 10–30 m. Ovaries that contained oocytes in the final stages of oocyte maturation or postovulatory follicles were found during May–July. We estimated that 50% of the females in the population had reached sexual maturity by 547 mm and an age of 3.1 years and that 50% of the males in the population had reached sexual maturity by 486 mm and an age of 2.3 years. Because Florida regulations restrict the maximum size of permit caught in recreational and commercial fisheries to 20-inch (508-mm), most fish harvested are sexually immature. With the current size selectivity of the fishery, the spawning stock biomass of permit could decrease quickly in response to moderate levels of fishing mortality; thus, the regulations in place in Florida to restrict harvest levels appear to be justified.
Resumo:
Skeletochronological data on growth changes in humerus diameter were used to estimate the age of Hawaiian green seaturtles ranging from 28.7 to 96.0 cm straight carapace length. Two age estimation methods, correction factor and spline integration, were compared, giving age estimates ranging from 4.1 to 34.6 and from 3.3 to 49.4 yr, respectively, for the sample data. Mean growth rates of Hawaiian green seaturtles are 4–5 cm/yr in early juveniles, decline to a relatively constant rate of about 2 cm/yr by age 10 yr, then decline again to less than 1 cm/yr as turtles near age 30 yr. On average, age estimates from the two techniques differed by just a few years for juvenile turtles, but by wider margins for mature turtles. The spline-integration method models the curvilinear relationship between humerus diameter and the width of periosteal growth increments within the humerus, and offers several advantages over the correction-factor approach.
Resumo:
Net catches from 1985–86 to 1994–95 at Pivers Island, North Carolina, indicated that glass-eel stage American eels (Anguilla rostrata) were recruited to the estuary from November to early May, with peak numbers in January, February, and March. There was no declining trend in recruitment over the years of sampling. Except for one year, there was no clear seasonal decrease in mean length. But shorter glass eels were older than longer glass eels, as judged by age within the glass eel growth zone of the otolith, suggesting that smaller fish took longer to arrive. The mean age of glass eels collected from the lower estuary and a freshwater site 9.5 km upriver differed by 8.4 d (36.2 vs. 44.6, respectively). Outer increments (30–35) of the otolith growth zone of glass eels from North Carolina were significantly wider than corresponding increments of otoliths from New Brunswick. Mean total ages of North Carolina, New Jersey, and New Brunswick elvers were 175.4, 201.2, and 209.3 d, corresponding to mean lengths of 55.9, 60.9, and 58.1 mm TL, respectively. The mean durations of glass-eel growth zones (44.6, 62.3, and 69.8) were in close agreement with those from previous studies, but total ages were not. This suggested that perhaps some finer (leptocephalus stage) increments were not detected by light microscopy, differences occurred in seasonal increment deposition, or absorption of the otolith material may have taken place during metamorphosis, rendering the aging of larvae inaccurate. Judging from the long recruitment period and seasonal uniformity in both mean age and length found in our study, the spawning period of American eels may be somewhat more protracted than previously considered.
Resumo:
The northwest Atlantic population of smooth dogfish (Mustelus canis) ranges from Cape Cod, Massachusetts, to South Carolina. Although M. canis is seasonally abundant in this region, very little is known about important aspects of its biology, such as growth and reproductive rates. In the early 1990s, commercial fishery landings of smooth dogfish dramatically increased on the east coast of the United States. This study investigated growth rates of the east coast M. canis population through analysis of growth patterns in vertebral centra. Marginal increment analysis, estimates of precision, and patterns in seasonal growth supported the use of vertebrae to age these sharks. Growth bands in vertebral samples were used to estimate ages for 894 smooth dogfish. Age-length data were used to determine von Bertalanffy growth parameters for this population: K = 0.292/yr, L∞ = 123.57 cm, and t0 = –1.94 years for females, and K = 0.440/yr, L∞ = 105.17 cm, and t0 = –1.52 years for males. Males matured at two or three years of age and females matured between four and seven years of age. The oldest age estimate for male and female samples was ten and sixteen years, respectively.
Resumo:
Oceanographic conditions and transport processes are often critical factors that affect the early growth, survival and recruitment of marine fishes. Sagittal otoliths were analysed to determine age and early growth for 381 jack mackerel (Trachurus japonicus) juveniles from Sagami Bay on the Pacific coast of Japan. Two separate hatching periods ( December and February-March) were identified. They originated from the spawning grounds in the East China Sea. Early growth and developmental rates of December-hatching fish were lower than those for February-March-hatching fish. It is likely that these differences were determined in the Kuroshio Current during transport from the spawning grounds to Sagami Bay, and the lower December water temperatures in the bay. Origin and hatch dates of juveniles in Sagami Bay were in contrast to previous research on Fukawa Bay, where April-or-later-hatching fish from spawning grounds in the coastal waters of southern Japan constituted about half of the juvenile population. Management of these two jack mackerel stocks needs to consider these differences in hatch date composition and spawning origins, as these differences could affect early growth and subsequent mortality.
Resumo:
The present research studied the effects of age and dietary protein level on pepsin, trypsin and amylase activity and their mRNA level in Petteobagrus fulvidraco larvae from 3 to 26 days after hatch (DAH). Three DAH larvae were fed three isoenergetic diets, containing 42.8% (CP 43), 47.3% (CP 47) and 52.8% (CP 53) crude protein. Live food (newly hatched Artemia, unenriched) was included as a control. The effects of age on enzyme activity and mRNA were as follows: pepsin and trypsin activity in all treatment groups showed a significant (P < 0.05) increase at the beginning and decrease later although the timing of decrease was not the same among treatment groups and between the digestive enzymes. Pepsin and trypsin mRNA level followed the pattern of their respective enzyme changes. Age significantly affected amylase activity (P < 0.05) while age had no effect on amylase mRNA during the experimental period. The four diets significantly (P < 0.05) affected activity and mRNA level of pepsin and trypsin. Diets did not affect amylase activity or mRNA level. These results suggest that the effects of age on pepsin and trypsin gene expressions are at the transcriptional level. Dietary protein level does affect pepsin and trypsin gene expression in the early life of P. fulvidraco. There were no transcriptional effects on amylase gene expression. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The data on the isotope compositions of rubidium, strontium and oxygen in the pumice of Okinawa Trough are reported for the first time. The ages of the pumice were successfully dated with the method of U-series disequilibrium. Then, the material source, crystallization evolution of magma and activity cycles of volcanos are explored. Isotopic data show that pumice magma was originally from the mantle, but had undergone a full crystallization differentiation and had been contaminated to a fair extent by crust-derived materials before the magma was erupted out of the sea floor. According to the dating results available so far, the earliest volcanic eruption in Okinawa Trough occurred about 70,000 a ago and the latest eruption was about 10,000 a B.P. During this period, there were three volcanic eruption cycles which were respectively corresponding to the middle Late Pleistocene, the late Late Pleistocene and the Early Holocene.
Resumo:
Laboratory studies have shown that Antarctic krill (Euphausia superba) shrink if maintained in conditions of low food availability. Recent studies have also demonstrated that E. superba individuals may be shrinking in the field during winter. If krill shrink during the winter, conclusions reached by length-frequency analysis may be unreliable because smaller animals may not necessarily be younger animals. In this study, the correlation between the body-length and the crystalline cone number of the compound eye was examined. Samples collected in the late summer show an apparent linear relationship between crystalline cone number and body-length. From a laboratory population, it appears that when krill shrink the crystalline cone number remains relatively unchanged. If crystalline cone number is little affected by shrinking, then the crystalline cone number may be a more reliable indicator of age than body-length alone. The ratio of crystalline cone number to body-length offers a method for detecting the effect of shrinking in natural populations of krill. On the basis of the crystalline cone number count, it appears from a field collection in early spring that E. superba do shrink during winter.
Resumo:
The sedimentary-volcanic tuff (locally called "green-bean rock") formed during the early Middle Triassic volcanic event in Guizhou Province is characterized as being thin, stable, widespread, short in forming time and predominantly green in color. The green-bean rock is a perfect indicator for stratigraphic division. Its petrographic and geochemical features are unique, and it is composed mainly of glassy fragments and subordinately of crystal fragments and volcanic ash balls. Analysis of the major and trace elements and rare-earth elements ( REE), as well as the related diagrams, permits us to believe that the green-bean rock is acidic volcanic material of the calc-alkaline series formed in the Indosinian orogenic belt on the Sino-Vietnam border, which was atmospherically transported to the tectonically stable areas and then deposited as sedimentary-volcanic rocks there. According to the age of green-bean rock, it is deduced that the boundary age of the Middle-Lower Triassic overlain by the sedimentary-volcanic tuff is about 247 Ma.