932 resultados para ENERGY ANALYSIS
Resumo:
Peak electricity demand requires substantial investment to update transmission, distribution and generation infrastructure. A successful community peak demand reduction project was examined to identify residential consumer motivational and contextual factors involved in their decision to adopt/not adopt interventions. Energy professionals actively worked to achieve community 'peer' membership and by becoming a trusted information source, facilitated voluntary home energy assessment requests from over 80% of the residential community. By combining and tailoring interventions to the specific needs and motivations of individual householders and the community, interventions promoting energy conservation and efficiency can be effective in achieving sustained reduction in peak demand.
Resumo:
As energy use information is becoming increasingly visible and sharable, this research aimed to inform the design of eco-feedback systems for the home. It involved observation and analysis of people's practices, which involve energy use, and their use of a domestic eco-feedback system. The question was asked: how can design best engage people with energy consumption information- making feedback more relevant to home occupants? In addressing this, a specifically bottom-up approach was employed, studying what people actually do with eco-feedback, rather than what technologists imagine eco-feedback will do to people.
Resumo:
Emissions trading schemes have been introduced throughout the world in order to achieve an environmental end. In the pursuit of reducing greenhouse gas emissions, these schemes will have a direct impact on the global economy. This book examines the details of emissions trading schemes through the lens of the World Trade Organization (WTO) law. Emissions trading schemes both implemented and proposed will be deconstructed to understand whether they will have a single uniform legal status within the WTO law, or indeed whether the legal status of the units of trade will differ on a case-by-case basis. This book examines non-discrimination provisions and exceptions within four significant WTO ‘covered agreements’. This analysis will be undertaken with a goal to understand how emissions trading scheme measures may be labelled and treated by WTO dispute settlement bodies. Moreover, the narrative of this publication demonstrates where decisions must be made by WTO Members in relation to the legal treatment of emissions trading units and liabilities. The aim of the book is to consider the issues associated with emissions trading that arise within the existing WTO law. This monograph will consider emissions trading schemes through the lens of WTO law to establish how these schemes will be defined, where they may potentially breach the non-discrimination provisions of the law and, whether the WTO law should be amended through Member agreement in order to accommodate these schemes. The book is an adaptation of a PhD thesis, which is an analysis of one emissions trading framework – the Australian Clean Energy Package – using WTO law as the theoretical framework. The aim of the proposed monograph is to increase the scope of analysis from the Clean Energy Package to emissions trading schemes more generally. It is envisaged that to do this effectively, examples of frameworks that have been proposed and implemented by various WTO members must be used as case studies for both WTO compliance and non-compliance.
Resumo:
In this paper, we propose a highly reliable fault diagnosis scheme for incipient low-speed rolling element bearing failures. The scheme consists of fault feature calculation, discriminative fault feature analysis, and fault classification. The proposed approach first computes wavelet-based fault features, including the respective relative wavelet packet node energy and entropy, by applying a wavelet packet transform to an incoming acoustic emission signal. The most discriminative fault features are then filtered from the originally produced feature vector by using discriminative fault feature analysis based on a binary bat algorithm (BBA). Finally, the proposed approach employs one-against-all multiclass support vector machines to identify multiple low-speed rolling element bearing defects. This study compares the proposed BBA-based dimensionality reduction scheme with four other dimensionality reduction methodologies in terms of classification performance. Experimental results show that the proposed methodology is superior to other dimensionality reduction approaches, yielding an average classification accuracy of 94.9%, 95.8%, and 98.4% under bearing rotational speeds at 20 revolutions-per-minute (RPM), 80 RPM, and 140 RPM, respectively.
Resumo:
The mineral tilleyite-Y, a carbonate-silicate of calcium, has been studied by scanning electron microscopy with chemical analysis using energy dispersive spectroscopy (EDX) and Raman and infrared spectroscopy. Multiple carbonate stretching modes are observed and support the concept of non-equivalent carbonate units in the tilleyite structure. Multiple Raman and infrared bands in the OH stretching region are observed, proving the existence of water in different molecular environments in the structure of tilleyite. Vibrational spectroscopy offers new information on the mineral tilleyite.
Resumo:
This work examined a new method of detecting small water filled cracks in underground insulation ('water trees') using data from commecially available non-destructive testing equipment. A testing facility was constructed and a computer simulation of the insulation designed in order to test the proposed ageing factor - the degree of non-linearity. This was a large industry-backed project involving an ARC linkage grant, Ergon Energy and the University of Queensland, as well as the Queensland University of Technology.
Resumo:
In light of larger public policy debates over intellectual property and climate change, this article considers patent practice, law, and policy in respect of biofuels. This debate has significant implications for public policy discussions in respect of energy independence, food security, and climate change. The first section of the paper provides a network analysis of patents in respect of biofuels across the three generations. It provides empirical research in respect of patent subject matter, ownership, and strategy in respect of biofuels. The second section provides a case study of significant patent litigation over biofuels. There is an examination of the biofuels patent litigation between the Danish company Novozymes, and Danisco and DuPont. The third section examines flexibilities in respect of patent law and clean technologies in the context of the case study of biofuels. In particular, it explores the debate over substantive doctrinal matters in respect of biofuels – such as patentable subject matter, technology transfer, patent pools, compulsory licensing, and disclosure requirements. The conclusion explores the relevance of the debate over patent law and biofuels to the larger public policy discussions over energy independence, food security, and climate change.
Resumo:
Sustainability has become crucial for the energy industry as projects in this industry are extensively large and complex and have significant impacts on the environment, community and economy. It demands the energy industry to proactively incorporate sustainability ideas and commit to sustainable project development. This study aims to investigate how the Australian energy industry responds to sustainability requirements and in particular what indicators used to measure sustainability performance. To achieve this, content analysis of sustainability reports, vision statements and policy statements of Australian energy companies listed in the 2013 PLATTS Top 250 Global Energy Company Rankings and government reports relating to sustainability has been conducted. The findings show that the energy companies extensively discuss sustainability aspects within three dimensions, i.e. community, environment, and economy. Their primary goals in sustainability are supplying cleaner energy for future, and doing business in a way that improves outcomes for shareholders, employees, business partners and the communities. In particular, energy companies have valued the employees of the business as a one of the key area that needs to be considered. Furthermore, the energy industry has become increasingly aware of the importance of measuring sustainability performance to achieve sustainability goals. A number of sustainability indicators have been developed on the basis of the key themes beyond economic measures. It is envisaged that findings from this research will help stakeholders in the energy industry to adopt different indicators to evaluate and ultimately achieve sustainability performance.
Resumo:
This study estimates the environmental efficiency of international listed firms in 10 worldwide sectors from 2007 to 2013 by applying an order-m method, a non-parametric approach based on free disposal hull with subsampling bootstrapping. Using a conventional output of gross profit and two conventional inputs of labor and capital, this study examines the order-m environmental efficiency accounting for the presence of each of 10 undesirable inputs/outputs and measures the shadow prices of each undesirable input and output. The results show that there is greater potential for the reduction of undesirable inputs rather than bad outputs. On average, total energy, electricity, or water usage has the potential to be reduced by 50%. The median shadow prices of undesirable inputs, however, are much higher than the surveyed representative market prices. Approximately 10% of the firms in the sample appear to be potential sellers or production reducers in terms of undesirable inputs/outputs, which implies that the price of each item at the current level has little impact on most of the firms. Moreover, this study shows that the environmental, social, and governance activities of a firm do not considerably affect environmental efficiency.
Resumo:
Since 2003, Mainland China has been promoting the public–private partnership (PPP) procurement model in the waste-to-energy incineration sector to reduce the waste burying rate and improve environmental quality. Five critical risk factors (CRFs) that affect the construction and operation of waste-to-energy incineration projects have been identified from real-life risk events of 14 PPP waste-to-energy incineration plants through content analysis. These risk factors are insufficient waste supply, disposal of non-licensed waste, environmental risk, payment risk, and lack of supporting infrastructure. A recently completed PPP waste-to-energy incineration plant, the Shanghai Tianma project, was investigated to learn from the effective management of CRFs. First-hand data about the Shanghai Tianma project was collected, with a focus on project negotiation and concession agreement. Lessons learned about risk management were acquired. This paper presents a detailed study of the contractual structure, risk sharing scheme, risk response measures to CRFs, and project transfer of a PPP project. The study results will provide governments with management implications to prepare equitable concession agreements and benefit private investors by effectively mitigating and managing risks in future PPP waste-to-energy incineration projects.
Resumo:
The concept of energy gap(s) is useful for understanding the consequence of a small daily, weekly, or monthly positive energy balance and the inconspicuous shift in weight gain ultimately leading to overweight and obesity. Energy gap is a dynamic concept: an initial positive energy gap incurred via an increase in energy intake (or a decrease in physical activity) is not constant, may fade out with time if the initial conditions are maintained, and depends on the 'efficiency' with which the readjustment of the energy imbalance gap occurs with time. The metabolic response to an energy imbalance gap and the magnitude of the energy gap(s) can be estimated by at least two methods, i.e. i) assessment by longitudinal overfeeding studies, imposing (by design) an initial positive energy imbalance gap; ii) retrospective assessment based on epidemiological surveys, whereby the accumulated endogenous energy storage per unit of time is calculated from the change in body weight and body composition. In order to illustrate the difficulty of accurately assessing an energy gap we have used, as an illustrative example, a recent epidemiological study which tracked changes in total energy intake (estimated by gross food availability) and body weight over 3 decades in the US, combined with total energy expenditure prediction from body weight using doubly labelled water data. At the population level, the study attempted to assess the cause of the energy gap purported to be entirely due to increased food intake. Based on an estimate of change in energy intake judged to be more reliable (i.e. in the same study population) and together with calculations of simple energetic indices, our analysis suggests that conclusions about the fundamental causes of obesity development in a population (excess intake vs. low physical activity or both) is clouded by a high level of uncertainty.
Resumo:
This paper investigates a pilot desalination system which consists of a direct expansion solar assisted heat pump (DXSAHP) coupled to a single-effect evaporator unit. The working fluid used is R134a and distillate is obtained via falling film evaporation and flashing in the unit. Experiments have been conducted in both day and night meteorological conditions in Singapore and the effects of solar irradiation and compressor speed have been studied against the system performance. From the experiments, the Performance Ratio (PR) obtained ranges from 0.43 to 0.88, the average Coefficient of Performance (COP) was 8 and the highest distillate production recorded was 1.38 kg/h
Resumo:
The “third-generation” 3D graphene structures, T-junction graphene micro-wells (T-GMWs) are produced on cheap polycrystalline Cu foils in a single-step, low-temperature (270 °C), energy-efficient, and environment-friendly dry plasma-enabled process. T-GMWs comprise vertical graphene (VG) petal-like sheets that seemlessly integrate with each other and the underlying horizontal graphene sheets by forming T-junctions. The microwells have the pico-to-femto-liter storage capacity and precipitate compartmentalized PBS crystals. The T-GMW films are transferred from the Cu substrates, without damage to the both, in de-ionized or tap water, at room temperature, and without commonly used sacrificial materials or hazardous chemicals. The Cu substrates are then re-used to produce similar-quality T-GMWs after a simple plasma conditioning. The isolated T-GMW films are transferred to diverse substrates and devices and show remarkable recovery of their electrical, optical, and hazardous NO2 gas sensing properties upon repeated bending (down to 1 mm radius) and release of flexible trasparent display plastic substrates. The plasma-enabled mechanism of T-GMW isolation in water is proposed and supported by the Cu plasma surface modification analysis. Our GMWs are suitable for various optoelectronic, sesning, energy, and biomedical applications while the growth approach is potentially scalable for future pilot-scale industrial production.
Resumo:
Quantitative ultrasound of the heel captures heel bone properties that independently predict fracture risk and, with bone mineral density (BMD) assessed by X-ray (DXA), may be convenient alternatives for evaluating osteoporosis and fracture risk. We performed a meta-analysis of genome-wide association (GWA) studies to assess the genetic determinants of heel broadband ultrasound attenuation (BUA; n 5 14 260), velocity of sound (VOS; n 5 15 514) and BMD (n 5 4566) in 13 discovery cohorts. Independent replication involved seven cohorts with GWA data (in silico n 5 11 452) and new genotyping in 15 cohorts (de novo n 5 24 902). In combined random effects, meta-analysis of the discovery and replication cohorts, nine single nucleotide polymorphisms (SNPs) had genome-wide significant (P < 5 3 108) associations with heel bone properties. Alongside SNPs within or near previously identified osteoporosis susceptibility genes including ESR1 (6q25.1: rs4869739, rs3020331, rs2982552), SPTBN1 (2p16.2: rs11898505), RSPO3 (6q22.33: rs7741021), WNT16 (7q31.31: rs2908007), DKK1 (10q21.1: rs7902708) and GPATCH1 (19q13.11: rs10416265), we identified a new locus on chromosome 11q14.2 (rs597319 close to TMEM135, a gene recently linked to osteoblastogenesis and longevity) significantly associated with both BUA and VOS (P < 8.23 3 1014). In meta-analyses involving 25 cohorts with up to 14 985 fracture cases, six of 10 SNPs associated with heel bone properties at P < 5 3 106 also had the expected direction of association with any fracture (P < 0.05), including threeSNPswithP < 0.005: 6q22.33 (rs7741021), 7q31.31 (rs2908007) and 10q21.1 (rs7902708). In conclusion, thisGWAstudy reveals the effect of several genescommon to central DXA-derivedBMDand heel ultrasound/DXAmeasures and points to anewgenetic locus with potential implications for better understanding of osteoporosis pathophysiology.
Resumo:
This paper evaluates and compares the system performance of a solar desiccant-evaporative cooling (SDEC) system with a referenced conventional variable air volume (VAV) system for a typical office building in all 8 Australian capital cities. A simulation model of the building is developed using the whole building simulation software EnergyPlus. The performance indicators for the comparison are system coefficient of performance (COP), annual primary energy consumption, annual energy savings, and annual CO2 emissions reduction. The simulation results show that Darwin has the most apparent advantages for SDEC system applications with an annual energy savings of 557 GJ and CO2 emission reduction of 121 tonnes. The maximum system COP is 7. For other climate zones such as Canberra, Hobart and Melbourne, the SDEC system is not as energy efficient as the conventional VAV system.