990 resultados para ELECTROCHEMICAL GENERATION


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Redox supercapacitors using polyaniline (PANI) coated. stainless-steel (SS) electrodes have been assembled and characterized. PANI has been deposited on SS substrate by a potentiodynamic method from an acidic electrolyte which contains aniline monomer. By employing stacks of electrodes, each with a geometrical area of 24 cm(2), in acidic perchlorate electrolyte, a capacitance value of about 450 F has been obtained over a long cycle-life. Characterization studies have been carried out by galvanostatic charge-discharge cycling of the capacitors singly, as well as in series and parallel configurations. Various electrical parameters have been evaluated. Use of the capacitors in parallel with a battery for pulse-power loads. and also working of a toy fan connected to the charged capacitors have been demonstrated. A specific capacitance value of about 1300 F g(-1) of PANI has been obtained at a discharge power of about 0.5 kW kg(-1). This value is several times higher than those reported in the literature for PANI and is, perhaps, the highest value known for a capacitor material. The inexpensive SS substrate and the high-capacitance PANI are favorable factors for commercial exploitation. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polyaniline (PANI) has been studied as an active material for electrochemical capacitors. Polymerization of aniline to PANI has been carried out potentiodynamically on a stainless steel (SS) substrate, instead of Pt-based substrates generally employed for this application. The PANI/SS electrodes have been evaluated by assembling symmetrical capacitors in NaClO(4) + HClO(4) mixed electrolyte and subjecting them to galvanostatic charge/discharge cycles between 0 and 0.75 V. The effect of substrate has been assessed by comparing the capacitance of PANI/SS and PANI/Pt electrodes. The capacitance of PANI/SS electrode is higher than that of PANI/Pt electrode by several times. The effect of sweep rate of potentiodynamic deposition of PANI/SS on capacitance has been investigated. At a power density of 0.5 kW kg(-1), a capacitance value of 815 F g(-1) of PANI is obtained for the deposition sweep rate of 200 mV s(-1). Increase in thickness of PANI on the SS substrate results in an increase in capacitance of PANI. This value of capacitance is the highest ever reported for any electrochemical capacitor material. Thus, in addition to a favorable economic aspect involved in using SS instead of Pt or Pt-based substrate, the advantage of higher capacitance of PANI has also been achieved. (C) 2002 The Electrochemical Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The formation of molecular films of 2,9,16,23-tetraamino metal phthalocyanines [TAM(II)Pc; M (II) = Co, Cu, and TAM(III)Pc; M = Fe] by spontaneous adsorption on gold and silver surfaces is described. The properties of these films have been investigated by cyclic voltammetry, impedance, and FT-Raman spectroscopy. The charge associated with Co(II) and Co(I) redox couple in voltammetric data leads to a coverage of (0.35+/-0.05) x 10(-10) mol cm(-2), suggesting that the tetraamino cobalt phthalocyanine is adsorbed as a monolayer with an almost complete coverage. The blocking behavior of the films toward oxygen and Fe(CN)(6)(3-/4-) redox couple have been followed by cyclic voltammetry and impedance measurements. This leads to an estimate of the coverage of about 85 % in the case of copper and the iron analogs. FT-Raman studies show characteristic bands around 236 cm(-1) revealing the interaction between the metal substrate and the nitrogen of the -NH2 group on the phthalocyanine molecules.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The enthalpy increments and the standard molar Gibbs energies of formation-of DyFeO3(s) and Dy3Fe5O12(s) have been measured using a Calvet micro-calorimeter and a solid oxide galvanic cell, respectively. A co-operative phase transition, related to anti-ferromagnetic to paramagnetic transformation, is apparent. from the heat capacity data for DyFeO3 at similar to 648 K. A similar type of phase transition has been observed for Dy3Fe5O12 at similar to 560 K which is related to ferrimagnetic to paramagnetic transformation. Enthalpy increment data for DyFeO3(s) and Dy3Fe5O12(s), except in the vicinity of the second-order transition, can be represented by the following polynomial expressions:{H(0)m(T) - H(0)m(298.15 K)) (Jmol(-1)) (+/-1.1%) = -52754 + 142.9 x (T (K)) + 2.48 x 10(-3) x (T (K))(2) + 2.951 x 10(6) x (T (K))(-1); (298.15 less than or equal to T (K) less than or equal to 1000) for DyFeO3(s), and {H(0)m(T) - H(0)m(298.15 K)} (Jmol(-1)) (+/-1.2%) = -191048 + 545.0 x (T - (K)) + 2.0 x 10(-5) x (T (K))(2) + 8.513 x 10(6) x (T (K))(-1); (208.15 less than or equal to T (K) less than or equal to 1000)for Dy3Fe5O12(s). The reversible emfs of the solid-state electrochemical cells: (-)Pt/{DyFeO3(s) + Dy2O3(s) + Fe(s)}/YDT/CSZ//{Fe(s) + Fe0.95O(s)}/Pt(+) and (-)Pt/{Fe(s) + Fe0.95O(s)}//CSZ//{DyFeO3(s) + Dy3Fe5O12(s) + Fe3O4(s)}/Pt(+), were measured in the temperature range from 1021 to 1250 K and 1035 to 1250 K, respectively. The standard Gibbs energies of formation of solid DyFeO3 and Dy3Fe5O12 calculated by the least squares regression analysis of the data obtained in the present study, and data for Fe0.95O and Dy2O3 from the literature, are given by Delta(f)G(0)m(DyFeO3,s)(kJmol(-1))(+/-3.2)= -1339.9 + 0.2473 x (T(K)); (1021 less than or equal to T (K) less than or equal to 1548)and D(f)G(0)m(Dy3Fe5O12,s) (kJmol(-1)) (+/-3.5) = -4850.4 + 0.9846 x (T (K)); (1035 less than or equal to T (K) less than or equal to 1250) The uncertainty estimates for Delta(f)G(0)m include the standard deviation in the emf and uncertainty in the data taken from the literature. Based on the thermodynamic information, oxygen potential diagram and chemical potential diagrams for the system Dy-Fe-O were developed at 1250 K. (C) 2002 Editions scientifiques et medicales Elsevier SAS. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Road transportation, as an important requirement of modern society, is presently hindered by restrictions in emission legislations as well as the availability of petroleum fuels, and as a consequence, the fuel cost. For nearly 270 years, we burned our fossil cache and have come to within a generation of exhausting the liquid part of it. Besides, to reduce the greenhouse gases, and to obey the environmental laws of most countries, it would be necessary to replace a significant number of the petroleum-fueled internal-combustion-engine vehicles (ICEVs) with electric cars in the near future. In this article, we briefly describe the merits and demerits of various proposed electrochemical systems for electric cars, namely the storage batteries, fuel cells and electrochemical supercapacitors, and determine the power and energy requirements of a modern car. We conclude that a viable electric car could be operated with a 50 kW polymer-electrolyte fuel cell stack to provide power for cruising and climbing, coupled in parallel with a 30 kW supercapacitor and/or battery bank to deliver additional short-term burst-power during acceleration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thermodynamic properties of Li3N dissolved in the molten LiCl salt at 900 K were explored using electrochemical methods. It was difficult to determine precisely the decomposition voltage of Li3N dissolved in the molten salt by cyclic voltammetry. The oxidation wave of N3– ion could not be located with high accuracy. However, the lithium activity of the Pb-Li alloy in equilibrium with the molten salt containing dissolved Li3N under nitrogen atmosphere could be measured electrochemically with high accuracy using the Li/Li + reference electrode. Under the conditions used in this study, the potential of the Li-Pb electrode is equal to the decomposition voltage of Li3N. The activity of Li3N in molten LiCl was determined for anionic fractions of N3– ranging from xN3– = 10–4 to 0.028. The nitride ion concentration in the salt was determined by chemical titration. The activity coefficient of the Li3N at high dilution was found to be very low, around 10–4. The activity coefficient increases sharply with composition and has a value of 0.25 at xN3– = 0.028. ©2001 The Electrochemical Society. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, a wind energy conversion system (WECS) using grid-connected wound rotor induction machine controlled from the rotor side is compared with both fixed speed and variable speed systems using cage rotor induction machine. The comparison is done on the basis of (I) major hardware components required, (II) operating region, and (III) energy output due to a defined wind function using the characteristics of a practical wind turbine. Although a fixed speed system is more simple and reliable, it severely limits the energy output of a wind turbine. In case of variable speed systems, comparison shows that using a wound rotor induction machine of similar rating can significantly enhance energy capture. This comes about due to the ability to operate with rated torque even at supersynchronous speeds; power is then generated out of the rotor as well as the stator. Moreover, with rotor side control, the voltage rating of the power devices and dc bus capacitor bank is reduced. The size of the line side inductor also decreasesd. Results are presented to show the substantial advantages of the doubly fed system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Metallic Ru has been found to coexist separately with CaO, RuO2, and the interoxide phases, Ca2RuO4, Ca3Ru2O7, and CaRuO3, present along the pseudobinary system CaO-RuO2. The standard Gibbs energies of formation (Df((ox))G(o)) of the three calcium ruthenates from their component oxides have been measured in the temperature range 925-1350 K using solid-state cells with yttria-stabilized zirconia as the electrolyte and Ru+RuO2 as the reference electrode. The standard Gibbs energies of formation (Deltaf((ox))G(o)) of the compounds can be represented by Ca2RuO4:Deltaf((ox))G(o)/J mol(-1)=-38,340-6.611 T (+/-120), Ca3Ru2O7 : Df((ox))G(o)/J mol(-1)=-75,910-11.26 T (+/-180), and CaRuO3 : Deltaf((ox))G(o)/J mol(-1)=-35,480-3.844 T(+/-70). The data for Ca2RuO4 corresponds to the stoichiometric composition, which has an orthorhombic structure, space group Pbca, with short c axis ("S'' form). The structural features of the ternary oxides responsible for their mild entropy stabilization are discussed. A three-dimensional oxygen potential diagram for the system Ca-Ru-O is developed as a function of composition and temperature from the results obtained. Using the Neumann-Kopp rule to estimate the heat capacity of the ternary oxides relative to their constituent binary oxides, the standard enthalpies of formation of the three calcium ruthenates from the elements and their standard entropies at 298.15 K are evaluated. (C) 2003 The Electrochemical Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Noble metal such as Ag normally exists in an fcc crystal structure. However as the size of the material is decreased to nanometer lengthscales, a structural transformation from that of its bulk state can be expected with new atomic arrangements due to competition between internal packing and minimization of surface energy. In many previous studies, it has been shown that silver nanowires (AGNWs) grown inside anodic alumina (AAO) templates by ac or dc electrochemical deposition from silver salts or complexes, adopt fcc structure and below some critical diameter ∼ 20 nm they may acquire hcp structure at low temperature. This is, however, critically dependant on the nature of confinement, as AgNWs grown inside nanotube confinement with subnanometer diameter have been reported to have fcc structure. Hence the question of the crystal structure of metal nanowires under combined influence of confinement, temperature and deposition condition remains open. In this abstract we show that the alternative crystal structures of AGNWs at room temperature can be achieved with electrochemical growth processes under specific conditions determined by the deposition parameters and nature of confinement. We fabricated AgNWs of 4H hexagonal structure with diameters 30 – 80 nm inside polycarbonate (PC) templates with a modified dc electrodeposition technique, where the nanowires were grown at deposition potentials as low as 10 mV in 2 M silver nitrate solution[1]. We call this low-potential electrodeposition (LPED) since the electrodeposition process occurs at potential much less than the standard Nernst potential (770 mV) of silver. Two types of electrodes were used – stainless steel and sputtered thin Pt film, neither of which had any influence on the crystal structure of the nanowires. EDS elemental analysis showed the nanowires to consist only of silver. Although the precise atomic dynamics during the LPED process is unclear at present, we investigated this with HRTEM (high-resolution transmission electron microscopy) characterization of nanowires grown over various deposition times, as well as electrical conductivity measurements. These experiments indicate that nanowire growth does not occur through a three-dimensional diffusion controlled process, as proposed for conventional over-potential deposition, but follow a novel instantaneous linear growth mechanism. Further experiments showed that, (a) conventional electrochemical growth at a small over-potential in a 2 mM AgNO3 solution yields nanowires with expected fcc structure inside the same PC templates, and (2) no nanowire was observed under the LPED conditions inside hard AAO templates, indicating that LPED-growth process, and hcp structure of the corresponding nanowires depend on deposition parameters, as well as nature of confinement.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The IEEE 802.16/WiMAX standard has fully embraced multi-antenna technology and can, thus, deliver robust and high transmission rates and higher system capacity. Nevertheless,due to its inherent form-factor constraints and cost concerns, a WiMAX mobile station (MS) should preferably contain fewer radio frequency (RF) chains than antenna elements.This is because RF chains are often substantially more expensive than antenna elements. Thus, antenna selection, wherein a subset of antennas is dynamically selected to connect to the limited RF chains for transceiving, is a highly appealing performance enhancement technique for multi-antenna WiMAX terminals.In this paper, a novel antenna selection protocol tailored for next-generation IEEE 802.16 mobile stations is proposed. As demonstrated by the extensive OPNET simulations, the proposed protocol delivers a significant performance improvement over conventional 802.16 terminals that lack the antenna selection capability. Moreover, the new protocol leverages the existing signaling methods defined in 802.16, thereby incurring a negligible signaling overhead and requiring only diminutive modifications of the standard. To the best of our knowledge, this paper represents the first effort to support antenna selection capability in IEEE 802.16 mobile stations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We derive bounds on leptonic double mass insertions of the type delta(l)(i4)delta(l)(4j) in four generational MSSM, using the present limits on l(i) -> l(j) + gamma. Two main features distinguish the rates of these processes in MSSM4 from MSSM3: (a) tan beta is restricted to be very small less than or similar to 3 and (b) the large masses for the fourth generation leptons. In spite of small tan beta, there is an enhancement in amplitudes with LLRR (4 delta(ll)(i4)delta(rr)(4j)) type insertions which pick up the mass of the fourth generation lepton, m(tau'). We find these bounds to be at least two orders of magnitude more stringent than those in MSSM3. (C) 2011 Elsevier B.V. All rights reserved.