967 resultados para Dynamic modelling
Resumo:
We present the first mathematical model on the transmission dynamics of Schistosoma japonicum. The work extends Barbour's classic model of schistosome transmission. It allows for the mammalian host heterogeneity characteristic of the S. japonicum life cycle, and solves the problem of under-specification of Barbour's model by the use of Chinese data we are collecting on human-bovine transmission in the Poyang Lake area of Jiangxi Province in China. The model predicts that in the lake/marshland areas of the Yangtze River basin: (1) once-early mass chemotherapy of humans is little better than twice-yearly mass chemotherapy in reducing human prevalence. Depending on the heterogeneity of prevalence within the population, targeted treatment of high prevalence groups, with lower overall coverage, can be more effective than mass treatment with higher overall coverage. Treatment confers a short term benefit only, with prevalence rising to endemic levels once chemotherapy programs are stopped (2) depending on the relative contributions of bovines and humans, bovine treatment can benefit humans almost as much as human treatment. Like human treatment, bovine treatment confers a short-term benefit. A combination of human and bovine treatment will dramatically reduce human prevalence and maintains the reduction for a longer period of time than treatment of a single host, although human prevalence rises once treatment ceases; (3) assuming 75% coverage of bovines, a bovine vaccine which acts on worm fecundity must have about 75% efficacy to reduce the reproduction rate below one and ensure mid-term reduction and long-term elimination of the parasite. Such a vaccination program should be accompanied by an initial period of human treatment to instigate a short-term reduction in prevalence, following which the reduction is enhanced by vaccine effects; (4) if the bovine vaccine is only 45% efficacious (the level of current prototype vaccines) it will lower the endemic prevalence, but will not result in elimination. If it is accompanied by an initial period of human treatment and by a 45% improvement in human sanitation or a 30% reduction in contaminated water contact by humans, elimination is then possible. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
A technique based on laser light diffraction is shown to be successful in collecting on-line experimental data. Time series of floc size distributions (FSD) under different shear rates (G) and calcium additions were collected. The steady state mass mean diameter decreased with increasing shear rate G and increased when calcium additions exceeded 8 mg/l. A so-called population balance model (PBM) was used to describe the experimental data, This kind of model describes both aggregation and breakage through birth and death terms. A discretised PBM was used since analytical solutions of the integro-partial differential equations are non-existing. Despite the complexity of the model, only 2 parameters need to be estimated: the aggregation rate and the breakage rate. The model seems, however, to lack flexibility. Also, the description of the floc size distribution (FSD) in time is not accurate.
Resumo:
It has been argued that power-law time-to-failure fits for cumulative Benioff strain and an evolution in size-frequency statistics in the lead-up to large earthquakes are evidence that the crust behaves as a Critical Point (CP) system. If so, intermediate-term earthquake prediction is possible. However, this hypothesis has not been proven. If the crust does behave as a CP system, stress correlation lengths should grow in the lead-up to large events through the action of small to moderate ruptures and drop sharply once a large event occurs. However this evolution in stress correlation lengths cannot be observed directly. Here we show, using the lattice solid model to describe discontinuous elasto-dynamic systems subjected to shear and compression, that it is for possible correlation lengths to exhibit CP-type evolution. In the case of a granular system subjected to shear, this evolution occurs in the lead-up to the largest event and is accompanied by an increasing rate of moderate-sized events and power-law acceleration of Benioff strain release. In the case of an intact sample system subjected to compression, the evolution occurs only after a mature fracture system has developed. The results support the existence of a physical mechanism for intermediate-term earthquake forecasting and suggest this mechanism is fault-system dependent. This offers an explanation of why accelerating Benioff strain release is not observed prior to all large earthquakes. The results prove the existence of an underlying evolution in discontinuous elasto-dynamic, systems which is capable of providing a basis for forecasting catastrophic failure and earthquakes.
Resumo:
We focus on mixtures of factor analyzers from the perspective of a method for model-based density estimation from high-dimensional data, and hence for the clustering of such data. This approach enables a normal mixture model to be fitted to a sample of n data points of dimension p, where p is large relative to n. The number of free parameters is controlled through the dimension of the latent factor space. By working in this reduced space, it allows a model for each component-covariance matrix with complexity lying between that of the isotropic and full covariance structure models. We shall illustrate the use of mixtures of factor analyzers in a practical example that considers the clustering of cell lines on the basis of gene expressions from microarray experiments. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
We compare Bayesian methodology utilizing free-ware BUGS (Bayesian Inference Using Gibbs Sampling) with the traditional structural equation modelling approach based on another free-ware package, Mx. Dichotomous and ordinal (three category) twin data were simulated according to different additive genetic and common environment models for phenotypic variation. Practical issues are discussed in using Gibbs sampling as implemented by BUGS to fit subject-specific Bayesian generalized linear models, where the components of variation may be estimated directly. The simulation study (based on 2000 twin pairs) indicated that there is a consistent advantage in using the Bayesian method to detect a correct model under certain specifications of additive genetics and common environmental effects. For binary data, both methods had difficulty in detecting the correct model when the additive genetic effect was low (between 10 and 20%) or of moderate range (between 20 and 40%). Furthermore, neither method could adequately detect a correct model that included a modest common environmental effect (20%) even when the additive genetic effect was large (50%). Power was significantly improved with ordinal data for most scenarios, except for the case of low heritability under a true ACE model. We illustrate and compare both methods using data from 1239 twin pairs over the age of 50 years, who were registered with the Australian National Health and Medical Research Council Twin Registry (ATR) and presented symptoms associated with osteoarthritis occurring in joints of the hand.
Resumo:
Conceptual modelling is an activity undertaken during information systems development work to build a representation of selected semantics about some real-world domain. Ontological theories have been developed to account for the structure and behavior of the real world in general. In this paper, I discuss why ontological theories can be used to inform conceptual modelling research, practice, and pedagogy. I provide examples from my research to illustrate how a particular ontological theory has enabled me to improve my understanding of certain conceptual modelling practices and grammars. I describe, also, how some colleagues and I have used this theory to generate several counter-intuitive, sometimes surprising predictions about widely advocated conceptual modelling practices - predictions that subsequently were supported in empirical research we undertook. Finally, I discuss several possibilities and pitfalls I perceived to be associated with our using ontological theories to underpin research on conceptual modelling.
Resumo:
A decision theory framework can be a powerful technique to derive optimal management decisions for endangered species. We built a spatially realistic stochastic metapopulation model for the Mount Lofty Ranges Southern Emu-wren (Stipiturus malachurus intermedius), a critically endangered Australian bird. Using diserete-time Markov,chains to describe the dynamics of a metapopulation and stochastic dynamic programming (SDP) to find optimal solutions, we evaluated the following different management decisions: enlarging existing patches, linking patches via corridors, and creating a new patch. This is the first application of SDP to optimal landscape reconstruction and one of the few times that landscape reconstruction dynamics have been integrated with population dynamics. SDP is a powerful tool that has advantages over standard Monte Carlo simulation methods because it can give the exact optimal strategy for every landscape configuration (combination of patch areas and presence of corridors) and pattern of metapopulation occupancy, as well as a trajectory of strategies. It is useful when a sequence of management actions can be performed over a given time horizon, as is the case for many endangered species recovery programs, where only fixed amounts of resources are available in each time step. However, it is generally limited by computational constraints to rather small networks of patches. The model shows that optimal metapopulation, management decisions depend greatly on the current state of the metapopulation,. and there is no strategy that is universally the best. The extinction probability over 30 yr for the optimal state-dependent management actions is 50-80% better than no management, whereas the best fixed state-independent sets of strategies are only 30% better than no management. This highlights the advantages of using a decision theory tool to investigate conservation strategies for metapopulations. It is clear from these results that the sequence of management actions is critical, and this can only be effectively derived from stochastic dynamic programming. The model illustrates the underlying difficulty in determining simple rules of thumb for the sequence of management actions for a metapopulation. This use of a decision theory framework extends the capacity of population viability analysis (PVA) to manage threatened species.
Resumo:
This paper proposes a template for modelling complex datasets that integrates traditional statistical modelling approaches with more recent advances in statistics and modelling through an exploratory framework. Our approach builds on the well-known and long standing traditional idea of 'good practice in statistics' by establishing a comprehensive framework for modelling that focuses on exploration, prediction, interpretation and reliability assessment, a relatively new idea that allows individual assessment of predictions. The integrated framework we present comprises two stages. The first involves the use of exploratory methods to help visually understand the data and identify a parsimonious set of explanatory variables. The second encompasses a two step modelling process, where the use of non-parametric methods such as decision trees and generalized additive models are promoted to identify important variables and their modelling relationship with the response before a final predictive model is considered. We focus on fitting the predictive model using parametric, non-parametric and Bayesian approaches. This paper is motivated by a medical problem where interest focuses on developing a risk stratification system for morbidity of 1,710 cardiac patients given a suite of demographic, clinical and preoperative variables. Although the methods we use are applied specifically to this case study, these methods can be applied across any field, irrespective of the type of response.
Resumo:
Colour pattern variation is a striking and widespread phenomenon. Differential predation risk between individuals is often invoked to explain colour variation, but empirical support for this hypothesis is equivocal. We investigated differential conspicuousness and predation risk in two species of Australian rock dragons, Ctenophorus decresii and C. vadnappa. To humans, the coloration of males of these species varies between 'bright' and 'dull'. Visual modelling based on objective colour measurements and the spectral sensitivities of avian visual pigments showed that dragon colour variants are differentially conspicuous to the visual system of avian predators when viewed against the natural background. We conducted field experiments to test for differential predation risk, using plaster models of 'bright' and 'dull' males. 'Bright' models were attacked significantly more often than 'dull' models suggesting that differential conspicuousness translates to differential predation risk in the wild. We also examined the influence of natural geographical range on predation risk. Results from 22 localities suggest that predation rates vary according to whether predators are familiar with the prey species. This study is among the first to demonstrate both differential conspicuousness and differential predation risk in the wild using an experimental protocol. (C) 2003 Published by Elsevier Ltd on behalf of The Association for the Study of Animal Behaviour.
Resumo:
Crushing and grinding are the most energy intensive part of the mineral recovery process. A major part of rock size reduction occurs in tumbling mills. Empirical models for the power draw of tumbling mills do not consider the effect of lifters. Discrete element modelling was used to investigate the effect of lifter condition on the power draw of tumbling mill. Results obtained with PFC3D code show that lifter condition will have a significant influence on the power draw and on the mode of energy consumption in the mill. Relatively high lifters will consume less power than low lifters, under otherwise identical conditions. The fraction of the power that will be consumed as friction will increase as the height of the lifters decreases. This will result in less power being used for high intensity comminution caused by the impacts. The fraction of the power that will be used to overcome frictional resistance is determined by the material's coefficient of friction. Based on the modelled results, it appears that the effective coefficient of friction for in situ mill is close to 0.1. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
The PFC3D (particle flow code) that models the movement and interaction of particles by the DEM techniques was employed to simulate the particle movement and to calculate the velocity and energy distribution of collision in two types of impact crusher: the Canica vertical shaft crusher and the BJD horizontal shaft swing hammer mill. The distribution of collision energies was then converted into a product size distribution for a particular ore type using JKMRC impact breakage test data. Experimental data of the Canica VSI crusher treating quarry and the BJD hammer mill treating coal were used to verify the DEM simulation results. Upon the DEM procedures being validated, a detailed simulation study was conducted to investigate the effects of the machine design and operational conditions on velocity and energy distributions of collision inside the milling chamber and on the particle breakage behaviour. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Measurement of exchange of substances between blood and tissue has been a long-lasting challenge to physiologists, and considerable theoretical and experimental accomplishments were achieved before the development of the positron emission tomography (PET). Today, when modeling data from modern PET scanners, little use is made of earlier microvascular research in the compartmental models, which have become the standard model by which the vast majority of dynamic PET data are analysed. However, modern PET scanners provide data with a sufficient temporal resolution and good counting statistics to allow estimation of parameters in models with more physiological realism. We explore the standard compartmental model and find that incorporation of blood flow leads to paradoxes, such as kinetic rate constants being time-dependent, and tracers being cleared from a capillary faster than they can be supplied by blood flow. The inability of the standard model to incorporate blood flow consequently raises a need for models that include more physiology, and we develop microvascular models which remove the inconsistencies. The microvascular models can be regarded as a revision of the input function. Whereas the standard model uses the organ inlet concentration as the concentration throughout the vascular compartment, we consider models that make use of spatial averaging of the concentrations in the capillary volume, which is what the PET scanner actually registers. The microvascular models are developed for both single- and multi-capillary systems and include effects of non-exchanging vessels. They are suitable for analysing dynamic PET data from any capillary bed using either intravascular or diffusible tracers, in terms of physiological parameters which include regional blood flow. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
The power required to operate large mills is typically 5-10 MW. Hence, optimisation of power consumption will have a significant impact on overall economic performance and environmental impact. Power draw modelling results using the discrete element code PFC3D have been compared with results derived from the widely used empirical Model of Morrell. This is achieved by calculating the power draw for a range of operating conditions for constant mill size and fill factor using two modelling approaches. fThe discrete element modelling results show that, apart from density, selection of the appropriate material damping ratio is critical for the accuracy of modelling of the mill power draw. The relative insensitivity of the power draw to the material stiffness allows selection of moderate stiffness values, which result in acceptable computation time. The results obtained confirm that modelling of the power draw for a vertical slice of the mill, of thickness 20% of the mill length, is a reliable substitute for modelling the full mill. The power draw predictions from PFC3D show good agreement with those obtained using the empirical model. Due to its inherent flexibility, power draw modelling using PFC3D appears to be a viable and attractive alternative to empirical models where necessary code and computer power are available.
Resumo:
This paper conducts a dynamic stability analysis of symmetrically laminated FGM rectangular plates with general out-of-plane supporting conditions, subjected to a uniaxial periodic in-plane load and undergoing uniform temperature change. Theoretical formulations are based on Reddy's third-order shear deformation plate theory, and account for the temperature dependence of material properties. A semi-analytical Galerkin-differential quadrature approach is employed to convert the governing equations into a linear system of Mathieu-Hill equations from which the boundary points on the unstable regions are determined by Bolotin's method. Free vibration and bifurcation buckling are also discussed as subset problems. Numerical results are presented in both dimensionless tabular and graphical forms for laminated plates with FGM layers made of silicon nitride and stainless steel. The influences of various parameters such as material composition, layer thickness ratio, temperature change, static load level, boundary constraints on the dynamic stability, buckling and vibration frequencies are examined in detail through parametric studies.