963 resultados para Dwarf mutant
Resumo:
Dominant mutations of the SOD1 gene encoding Cu,Zn superoxide dismutase have been found in members of certain families with familial amyotrophic lateral sclerosis (ALS). To better understand the contribution of SOD1 mutations in the pathogenesis of familial ALS, we developed transgenic mice expressing one of the mutations found in familial ALS. These animals display clinical and pathological features closely resembling human ALS. Early changes observed in these animals were intra-axonal and dendritic vacuoles due to dilatation of the endoplasmic reticulum and vacuolar degeneration of mitochondria. We have reported that the Golgi apparatus of spinal cord motor neurons in patients with sporadic ALS is fragmented and atrophic. In this study we show that spinal cord motor neurons of transgenic mice for an SOD1 mutation display a lesion of the Golgi apparatus identical to that found in humans with sporadic ALS. In these mice, the stacks of the cisternae of the fragmented Golgi apparatus are shorter than in the normal organelle, and there is a reduction in Golgi-associated vesicles and adjacent cisternae of the rough endoplasmic reticulum. Furthermore, the fragmentation of the Golgi apparatus occurs in an early, presymptomatic stage and usually precedes the development of the vacuolar changes. Transgenic mice overexpressing the wild-type human superoxide dismutase are normal. In familial ALS, an early lesion of the Golgi apparatus of motor neurons may have adverse functional effects, because newly synthesized proteins destined for fast axoplasmic transport pass through the Golgi apparatus.
Resumo:
Inherited defects in the gene for methylmalonyl-CoA mutase (EC 5.4.99.2) result in the mut forms of methylmalonic aciduria. mut- mutations lead to the absence of detectable mutase activity and are not corrected by excess cobalamin, whereas mut- mutations exhibit residual activity when exposed to excess cobalamin. Many of the mutations that cause methylmalonic aciduria in humans affect residues in the C-terminal region of the methylmalonyl-CoA mutase. This portion of the methylmalonyl-CoA mutase sequence can be aligned with regions in other B12 (cobalamin)-dependent enzymes, including the C-terminal portion of the cobalamin-binding region of methionine synthase. The alignments allow the mutations of human methylmalonyl-CoA mutase to be mapped onto the structure of the cobalamin-binding fragment of methionine synthase from Escherichia coli (EC 2.1.1.13), which has recently been determined by x-ray crystallography. In this structure, the dimethylbenzimidazole ligand to the cobalt in free cobalamin has been displaced by a histidine ligand, and the dimethylbenzimidazole nucleotide "tail" is thrust into a deep hydrophobic pocket in the protein. Previously identified mut0 and mut- mutations (Gly-623 --> Arg, Gly-626 --> Cys, and Gly-648 --> Asp) of the mutase are predicted to interfere with the structure and/or stability of the loop that carries His-627, the presumed lower axial ligand to the cobalt of adenosylcobalamin. Two mutants that lead to severe impairment (mut0) are Gly-630 --> Glu and Gly-703 --> Arg, which map to the binding site for the dimethylbenzimidazole nucleotide substituent of adenosylcobalamin. The substitution of larger residues for glycine is predicted to block the binding of adenosylcobalamin.
Resumo:
Prion diseases are a group of fatal neurodegenerative disorders that are unique in being infectious, genetic, and sporadic in origin. Infectious cases are caused by prions, which are composed primarily of PrPSc, a posttranslationally modified isoform of the normal cellular prion protein PrPC. Inherited cases are linked to insertional or point mutations in the host gene encoding PrPC. To investigate the molecular mechanisms underlying inherited prion diseases, we have constructed stably transfected Chinese hamster ovary cells that express mouse PrPs homologous to two human PrPs associated with familial Creutzfeldt-Jakob disease. One mouse PrP molecule carries a Glu-->Lys substitution at codon 199, and the other carries an insertion of six additional octapeptide repeats between codons 51 and 90. We find that both of these mutant PrPs display several biochemical hallmarks of PrPSc when synthesized in cell culture. Unlike wild-type PrP, the mutant proteins are detergent insoluble and are relatively resistant to digestion by proteinase K, yielding an N-terminally truncated core fragment of 27-30 kDa. Pulse-chase labeling experiments demonstrate that these properties are acquired posttranslationally, and are accompanied by increased metabolic stability of the protein. Our results provide the first evidence that a molecule with properties reminiscent of PrPSc can be generated de novo in cultured cells.
Resumo:
The hepatitis B virus X protein (HBx) sequence (154 aa) has been divided into six regions (A-F) based on its sequence homology with X proteins of other mammalian hepadnaviruses. Regions A, C, and E are more conserved and include all the four conserved cysteines (C7, C61, C69, and C137). To localize the regions of HBx important for transactivation, a panel of 10 deletion mutants (X5-X14) and 4 single point mutants (X1-X4), each corresponding to a conserved cysteine residue, was constructed by site-directed mutagenesis. A HBx-specific monoclonal antibody was developed and used to confirm the expression of mutants by Western blot. Transactivation property of the HBx mutants was studied on Rous sarcoma virus-long terminal repeat (RSV-LTR) in transient transfection assays. We observed that deletion of the most conserved region A or substitution of the N-terminal cysteine (C7) had no effect on transactivation. Deletion of the nonconserved regions B or F also had no deleterious effects. Deletions of regions C and D resulted in a significant loss of function. Substitution of both C61 and C69 present in region C, caused almost 90% loss of activity that could be partially overcome by transfecting more expression plasmid. The fully conserved 9 amino acid segment (residues 132 to 140) within region E including C137 appeared to be crucial for its activity. Finally, a truncated mutant X15 incorporating only regions C to E (amino acids 58-140) was able to stimulate the RSV-LTR quite efficiently, suggesting a crucial role played by this domain in transactivation function.
Resumo:
Glutamate dehydrogenase (GDH) is ubiquitous to all organisms, yet its role in higher plants remains enigmatic. To better understand the role of GDH in plant nitrogen metabolism, we have characterized an Arabidopsis mutant (gdh1-1) defective in one of two GDH gene products and have studied GDH1 gene expression. GDH1 mRNA accumulates to highest levels in dark-adapted or sucrose-starved plants, and light or sucrose treatment each repress GDH1 mRNA accumulation. These results suggest that the GDH1 gene product functions in the direction of glutamate catabolism under carbon-limiting conditions. Low levels of GDH1 mRNA present in leaves of light-grown plants can be induced by exogenously supplied ammonia. Under such conditions of carbon and ammonia excess, GDH1 may function in the direction of glutamate biosynthesis. The Arabidopsis gdh-deficient mutant allele gdh1-1 cosegregates with the GDH1 gene and behaves as a recessive mutation. The gdh1-1 mutant displays a conditional phenotype in that seedling growth is specifically retarded on media containing exogenously supplied inorganic nitrogen. These results suggest that GDH1 plays a nonredundant role in ammonia assimilation under conditions of inorganic nitrogen excess. This notion is further supported by the fact that the levels of mRNA for GDH1 and chloroplastic glutamine synthetase (GS2) are reciprocally regulated by light.
Resumo:
A single gene (mas) encodes the multifunctional enzyme that catalyzes the synthesis of very long chain multiple methyl branched fatty acids called mycocerosic acids that are present only in slow-growing pathogenic mycobacteria and are thought to be important for pathogenesis. To achieve a targeted disruption of mas, an internal 2-kb segment of this gene was replaced with approximately the same size hygromycin-resistance gene (hyg), such that hyg was flanked by 4.7- and 1.4-kb segments of mas. Transformation of Mycobacterium bovis BCG with this construct in a plasmid that cannot replicate in mycobacteria yielded hygromycin-resistant transformants. Screening of 38 such transformants by PCR revealed several transformants representing homologous recombination with single crossover and one with double crossover. With primers representing the hyg termini and those representing the mycobacterial genome segments outside that used to make the transformation construct, the double-crossover mutant yielded PCR products expected from either side of hyg. Gene replacement was further confirmed by the absence of the vector and the 2-kb segment of mas replaced by hyg from the genome of the mutant. Thin-layer and radio-gas chromatographic analyses of the lipids derived from [1-14C]propionate showed that the mutant was incapable of synthesizing mycocerosic acids and mycosides. Thus, homologous recombination with double crossover was achieved in a slow-growing mycobacterium with an intron-containing RecA. The resulting mas-disrupted mutant should allow testing of the postulated roles of mycosides in pathogenesis.
Resumo:
We have screened a collection of transposable-element-induced mutations for those which dominantly modify the extra R7 phenotype of a hypomorphic yan mutation. The members of one of the identified complementation groups correspond to disruptions of the tramtrack (ttk) gene. As heterozygotes, ttk alleles increase the percentage of R7 cells in yan mutant eyes. Just as yan mutations increase ectopic R7 cell formation, homozygous ttk mutant eye clones also contain supernumerary R7 cells. However, in contrast to yan, the formation of these cells in ttk mutant eye tissue is not necessarily dependent on the activity of the sina gene. Furthermore, although yan mutations dominantly interact with mutations in the Ras1, Draf, Dsor1, and rolled (rl) genes to influence R7 cell development, ttk mutations only interact with yan and rl gene mutations to affect this signaling pathway. Our data suggest that yan and ttk both function to repress inappropriate R7 cell development but that their mechanisms of action differ. In particular, TTK activity appears to be autonomously required to regulate a sina-independent mechanism of R7 determination.
Resumo:
Many resident membrane proteins of the endoplasmic reticulum (ER) do not have known retrieval sequences. Among these are the so-called tail-anchored proteins, which are bound to membranes by a hydrophobic tail close to the C terminus and have most of their sequence as a cytosolically exposed N-terminal domain. Because ER tail-anchored proteins generally have short (< or = 17 residues) hydrophobic domains, we tested whether this feature is important for localization, using cytochrome b5 as a model. The hydrophobic domain of cytochrome b5 was lengthened by insertion of five amino acids (ILAAV), and the localization of the mutant was analyzed by immunofluorescence in transiently transfected mammalian cells. While the wild-type cytochrome was localized to the ER, the mutant was relocated to the surface. This relocation was not due to the specific sequence introduced, as demonstrated by the ER localization of a second mutant, in which the original length of the membrane anchor was restored, while maintaining the inserted ILAAV sequence. Experiments with brefeldin A and with cycloheximide demonstrated that the extended anchor mutant reached the plasma membrane by transport along the secretory pathway. We conclude that the short membrane anchor of cytochrome b5 is important for its ER residency, and we discuss the relevance of this finding for other ER tail-anchored proteins.
Resumo:
A pantropic pseudotyped retroviral vector containing the envelope protein of vesicular stomatitis virus was used as a gene transfer vector in the dwarf surfclam, Mulinia lateralis. These pantropic retroviral vectors have an extremely broad host cell range and can infect many nonmammalian species. Newly fertilized dwarf surfclam eggs were electroporated at 700 V in the presence of 1 x 10(4) colony-forming units of pantropic pseudotyped retroviral particles. Infection was well tolerated and did not affect the survival rate of the embryos. Gametes collected from P1 presumptive transgenic animals were analyzed for the presence of provirus by PCR, and in different experiments 13-33% of the gamete pools were positive for the transgene. Dot blot hybridization of DNA samples from the F1 offspring of two different crosses between infected P1 and wild-type individuals revealed that 28% and 31% of F1 offspring were transgenic, respectively. Southern blot analysis of DNA isolated from PCR-positive F1 animals confirmed integration of a single copy of the provirus into the host genome. Thus, the germ lines of these two P1 transgenic animals were mosaic for the transgene. Expression of beta-galactosidase encoded by the provirus was detected in transgenic but not control surfclam embryos. Pantropic pseudotyped retroviral vectors provide a useful method for the stable introduction of foreign genetic information into surfclams and may facilitate the introduction of desirable genetic traits into commercially important shellfish and crustaceans.
Resumo:
We have shown elsewhere that acidification is an early event in apoptosis, preceding DNA cleavage. Cells expressing the most common mutation (delF508) of the cystic fibrosis transmembrane regulator (CFTR) exhibit a higher resting intracellular pH and are unable to secrete chloride and bicarbonate in response to cAMP. We hypothesized that defective acidification in cells expressing delF508 CFTR would interfere with the acidification that accompanies apoptosis, which in turn, would prevent endonuclease activation and cleavage of DNA. We therefore determined whether the function of the CFTR would affect the process of apoptosis in mouse mammary epithelial C127 cells stably transfected with the wild-type CFTR (C127/wt) or the delF508 mutation of the CFTR (C127/508). C127 cells possessed an acid endonuclease capable of DNA degradation at low pH. Sixteen hours after treatment with cycloheximide, C127/wt cells underwent cytoplasmic acidification. In contrast, C127/508 cells failed to demonstrate acidification. Furthermore, the C127/508 cells did not show nuclear condensation or DNA fragmentation detected by in situ nick-end labeling after treatment with cycloheximide or etoposide, in contrast to the characteristic features of apoptosis demonstrated by the C127/wt cells. Measurement of cell viability indicated a preservation of cell viability in C127/508 cells but not in C127/wt cells. That this resistance to the induction of apoptosis depended upon the loss of CFTR activity is shown by the finding that inhibition of the CFTR with diphenylamine carboxylate in C127/wt cells conferred similar protection. These findings suggest a role for the CFTR in acidification during the initiation of apoptosis in epithelial cells and imply that a failure to undergo programmed cell death could contribute to the pathogenesis of cystic fibrosis.
Resumo:
Human granulocyte-macrophage colony-stimulating factor (GM-CSF) binds to a high-affinity heterodimeric receptor composed of a specific alpha chain and a common beta chain (beta(c)), which is shared with the receptors for interleukins 3 and 5. Hemopoietic cell survival requires GM-CSF binding this high-affinity receptor. We have recently developed the GM-CSF mutant E21R, which selectively binds to the alpha chain and behaves as a competitive GM-CSF antagonist. We have now examined the role of E21R on the survival of hemopoietic cells and found that E21R causes apoptosis (programmed cell death) of normal and malignant cells directly in the absence of GM-CSF. The direct apoptotic effect of E21R occurred in a dose- and time-dependent manner. Apoptosis by E21R was dependent on cells expressing the high-affinity GM-CSF receptor and could be blocked by GM-CSF. Significantly, apoptosis of the cells occurred even in the presence of the survival factors granulocyte CSF and stem cell factor but was prevented by engagement of beta(c) with interleukin 3. The initiation of apoptosis required phosphorylation, transcriptional activity, and protein synthesis. These findings support a model whereby binding of E21R to the alpha chain leads to apoptosis, while beta(c) plays an important role in cell survival. This model may be applicable to other multimeric cytokine receptors and offers a novel approach for the treatment of human leukemia.
Resumo:
Cerebrovascular amyloid beta-protein (Abeta) deposition is a pathological feature of several related disorders including Alzheimer disease and hereditary cerebral hemorrhage with amyloidosis Dutch-type (HCHWA-D). HCHWA-D is caused by a point mutation in the gene that encodes the Abeta precursor and results in a Glu --> Gln substitution at position 22 of Abeta. In comparison to Alzheimer disease, the cerebrovascular Abeta deposition in HCHWA-D is generally more severe, often resulting in intracerebral hemorrhage when patients reach 50 years of age. We recently reported that Abeta(1-42), but not the shorter Abeta(1-40) induces pathologic responses in cultured human leptomeningeal smooth muscle cells including cellular degeneration that is accompanied by a marked increase in the levels of cellular Abeta precursor and soluble Abeta peptide. In the present study, we show that the HCHWA-D mutation converts the normally nonpathologic Abeta(1-40) into a highly pathologic form of the peptide for cultured human leptomeningeal smooth muscle cells. These findings suggest that these altered functional properties of HCHWA-D mutated Abeta may contribute to the early and often severe cerebrovascular pathology that is the hallmark of this disorder.
Resumo:
Mutations in the human Cu,Zn superoxide dismutase gene (SOD1) are found in 20% of kindreds with familial amyotrophic lateral sclerosis. Transgenic mice (line G1H) expressing a human SOD1 containing a mutation of Gly-93 --> Ala (G93A) develop a motor neuron disease similar to familial amyotrophic lateral sclerosis, but transgenic mice (line N1029) expressing a wild-type human SOD1 transgene do not. Because neurofilament (NF)-rich inclusions in spinal motor neurons are characteristic of amyotrophic lateral sclerosis, we asked whether mutant G1H and/or N1029 mice develop similar NF lesions. NF inclusions (i.e., spheroids, Lewy body-like inclusions) were first detected in spinal cord motor neurons of the G1H mice at 82 days of age about the time these mice first showed clinical evidence of disease. Other neuronal intermediate filament proteins (alpha-internexin, peripherin) also accumulated in these spheroids. The onset of accumulations of ubiquitin immunoreactivity in the G1H mice paralleled the emergence of vacuoles and NF-rich spheroids in neurons, but they did not colocalize exclusively with spheroids. In contrast, NF inclusions were not seen in the N1029 mice until they were 132 days old, and ubiquitin immunoreactivity was not increased in the N1029 mice even at 199 days of age. Astrocytosis in spinal cord was associated with a marked increase in glial fibrillary acidic protein immunoreactivity in the G1H mice, but not in the N1029 mice. Finally, comparative studies revealed a striking similarity between the cytoskeletal pathology in the G1H transgenic mice and in patients with amyotrophic lateral sclerosis. These findings link a specific SOD1 mutation with alterations in the neuronal cytoskeleton of patients with amyotrophic lateral sclerosis. Thus, neuronal cytoskeletal abnormalities may be implicated in the pathogenesis of human familial amyotrophic lateral sclerosis.
Resumo:
The final step in the pathway that provides for glycosylphosphatidylinositol (GPI) anchoring of cell-surface proteins occurs in the lumen of the endoplasmic reticulum and consists of a transamidation reaction in which fully assembled GPI anchor donors are substituted for specific COOH-terminal signal peptide sequences contained in nascent polypeptides. In previous studies we described a human K562 cell mutant line, designated class K, which assembles all the known intermediates of the GPI pathway but fails to display GPI-anchored proteins on its surface membrane. In the present study, we used mRNA encoding miniPLAP, a truncated form of placental alkaline phosphatase (PLAP), in in vitro assays with rough microsomal membranes (RM) of mutant K cells to further characterize the biosynthetic defect in this line. We found that RM from mutant K cells supported NH2-terminal processing of the nascent translational product, preprominiPLAP, but failed to show any detectable COOH-terminal processing of the resulting prominiPLAP to GPI-anchored miniPLAP. Proteinase K protection assays verified that NH2-terminal processed prominiPLAP was appropriately translocated into the endoplasmic reticulum lumen. The addition of hydrazine or hydroxylamine, which can substitute for GPI donors, to RM from wild-type or mutant cells defective in various intermediate biosynthetic steps in the GPI pathway produced large amounts of the hydrazide or hydroxamate of miniPLAP. In contrast, the addition of these nucleophiles to RM of class K cells yielded neither of these products. These data, taken together, lead us to conclude that mutant K cells are defective in part of the GPI transamidase machinery.
Resumo:
Previously we showed that an Escherichia coli hemH mutant, defective in the ultimate step of heme synthesis, ferrochelatase, is somewhat better than 100-fold more sensitive than its wild-type parent in tumbling to blue light. Here we explore the effect of a hemG mutant, defective in the penultimate step, protoporphyrinogen oxidase. We found that a hemG mutant also is somewhat better than 100-fold more sensitive in tumbling to blue light compared to its wild-type parent. The amount of non-iron porphyrins accumulated in hemG or hemH mutants was more than 100-fold greater than in wild type. The nature of these accumulated porphyrins is described. When heme was present, as in the wild type, the non-iron (non-heme) porphyrins were maintained at a relatively low concentration and tumbling to blue light at an intensity effective for hemG or hemH did not occur. The function of tumbling to light is most likely to allow escape from the lethality of intense light.